smol llama
Collection
🚧"raw" pretrained smol_llama checkpoints - WIP 🚧
•
4 items
•
Updated
•
6
This model is a fine-tuned version of v10 (refinedweb-3m dedup) further trained for 2 epochs on KI dataset.
It achieves the following results on the evaluation set:
hf-causal-experimental (pretrained=pszemraj/verysmol_llama-v11-KIx2,revision=main,trust_remote_code=True,dtype='float'), limit: None, provide_description: False, num_fewshot: 0, batch_size: 16
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
arc_easy | 0 | acc | 0.4024 | ± | 0.0101 |
acc_norm | 0.3788 | ± | 0.0100 | ||
boolq | 1 | acc | 0.6199 | ± | 0.0085 |
lambada_openai | 0 | ppl | 111.9939 | ± | 4.6906 |
acc | 0.2354 | ± | 0.0059 | ||
openbookqa | 0 | acc | 0.1440 | ± | 0.0157 |
acc_norm | 0.2760 | ± | 0.0200 | ||
piqa | 0 | acc | 0.5713 | ± | 0.0115 |
acc_norm | 0.5664 | ± | 0.0116 | ||
winogrande | 0 | acc | 0.5201 | ± | 0.0140 |
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
arc_challenge | 0 | acc | 0.1971 | ± | 0.0116 |
acc_norm | 0.2278 | ± | 0.0123 |
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
hellaswag | 0 | acc | 0.2618 | ± | 0.0088 |
acc_norm | 0.2797 | ± | 0.0090 |
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
truthfulqa_mc | 1 | mc1 | 0.2509 | ± | 0.0152 |
mc2 | 0.4492 | ± | 0.0156 |
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.0681 | 0.03 | 150 | 3.0689 | 0.4259 |
3.0113 | 0.07 | 300 | 3.0433 | 0.4278 |
2.9468 | 0.1 | 450 | 3.0362 | 0.4288 |
3.0162 | 0.13 | 600 | 3.0148 | 0.4326 |
2.9531 | 0.17 | 750 | 3.0012 | 0.4341 |
2.9282 | 0.2 | 900 | 2.9923 | 0.4358 |
2.9485 | 0.23 | 1050 | 2.9845 | 0.4357 |
2.9365 | 0.27 | 1200 | 2.9749 | 0.4375 |
...
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.8215 | 1.7 | 7650 | 2.8943 | 0.4496 |
2.7714 | 1.74 | 7800 | 2.8914 | 0.4501 |
2.8132 | 1.77 | 7950 | 2.8913 | 0.4500 |
2.8505 | 1.8 | 8100 | 2.8906 | 0.4502 |
2.8294 | 1.84 | 8250 | 2.8901 | 0.4502 |
2.7977 | 1.87 | 8400 | 2.8891 | 0.4499 |
2.7501 | 1.9 | 8550 | 2.8878 | 0.4505 |
2.8038 | 1.94 | 8700 | 2.8883 | 0.4504 |
2.7547 | 1.97 | 8850 | 2.8876 | 0.4502 |