|
--- |
|
license: mit |
|
--- |
|
|
|
You should follow the two steps |
|
|
|
1. Install libraries and dowloand github package [Meteor](https://github.com/ByungKwanLee/Meteor) |
|
```bash |
|
bash install |
|
conda activate meteor |
|
pip install -r requirements.txt |
|
``` |
|
|
|
2. Run the file: demo.py in [Meteor](https://github.com/ByungKwanLee/Meteor) |
|
|
|
You can choose prompt type: text_only or with_image! |
|
Enjoy Meteor! |
|
|
|
|
|
```python |
|
import time |
|
import torch |
|
from config import * |
|
from PIL import Image |
|
from utils.utils import * |
|
import torch.nn.functional as F |
|
from meteor.load_mmamba import load_mmamba |
|
from meteor.load_meteor import load_meteor |
|
from torchvision.transforms.functional import pil_to_tensor |
|
|
|
# User prompt |
|
prompt_type='with_image' # text_only / with_image |
|
img_path='figures/demo.png' |
|
question='Provide the detail of the image' |
|
|
|
# loading meteor model |
|
mmamba = load_mmamba('BK-Lee/Meteor-Mamba').cuda() |
|
meteor, tok_meteor = load_meteor('BK-Lee/Meteor-MLM', bits=4) |
|
|
|
# freeze model |
|
freeze_model(mmamba) |
|
freeze_model(meteor) |
|
|
|
# Device |
|
device = torch.cuda.current_device() |
|
|
|
# prompt type -> input prompt |
|
image_token_number = int((490/14)**2) |
|
if prompt_type == 'with_image': |
|
# Image Load |
|
image = F.interpolate(pil_to_tensor(Image.open(img_path).convert("RGB")).unsqueeze(0), size=(490, 490), mode='bicubic').squeeze(0) |
|
inputs = [{'image': image, 'question': question}] |
|
elif prompt_type=='text_only': |
|
inputs = [{'question': question}] |
|
|
|
# Generate |
|
with torch.inference_mode(): |
|
|
|
# Meteor Mamba |
|
mmamba_inputs = mmamba.eval_process(inputs=inputs, tokenizer=tok_meteor, device=device, img_token_number=image_token_number) |
|
if 'image' in mmamba_inputs.keys(): |
|
clip_features = meteor.clip_features(mmamba_inputs['image']) |
|
mmamba_inputs.update({"image_features": clip_features}) |
|
mmamba_outputs = mmamba(**mmamba_inputs) |
|
|
|
# Meteor |
|
meteor_inputs = meteor.eval_process(inputs=inputs, data='demo', tokenizer=tok_meteor, device=device, img_token_number=image_token_number) |
|
if 'image' in mmamba_inputs.keys(): |
|
meteor_inputs.update({"image_features": clip_features}) |
|
meteor_inputs.update({"tor_features": mmamba_outputs.tor_features}) |
|
|
|
# Generation |
|
generate_ids = meteor.generate(**meteor_inputs, do_sample=True, max_new_tokens=128, top_p=0.95, temperature=0.9, use_cache=True) |
|
|
|
# Text decoding |
|
decoded_text = tok_meteor.batch_decode(generate_ids, skip_special_tokens=True)[0].split('assistant\n')[-1].split('[U')[0].strip() |
|
print(decoded_text) |
|
``` |