Korean-Sentence-Embedding
Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides environments where individuals can train models.
Quick tour
Note
All the pretrained models are uploaded in Huggingface Model Hub. Check https://huggingface.co/BM-K
import torch
from transformers import AutoModel, AutoTokenizer
def cal_score(a, b):
if len(a.shape) == 1: a = a.unsqueeze(0)
if len(b.shape) == 1: b = b.unsqueeze(0)
a_norm = a / a.norm(dim=1)[:, None]
b_norm = b / b.norm(dim=1)[:, None]
return torch.mm(a_norm, b_norm.transpose(0, 1)) * 100
model = AutoModel.from_pretrained('BM-K/KoSimCSE-roberta-multitask') # or 'BM-K/KoSimCSE-bert-multitask'
tokenizer = AutoTokenizer.from_pretrained('BM-K/KoSimCSE-roberta-multitask') # or 'BM-K/KoSimCSE-bert-multitask'
sentences = ['์นํ๊ฐ ๋คํ์ ๊ฐ๋ก ์ง๋ฌ ๋จน์ด๋ฅผ ์ซ๋๋ค.',
'์นํ ํ ๋ง๋ฆฌ๊ฐ ๋จน์ด ๋ค์์ ๋ฌ๋ฆฌ๊ณ ์๋ค.',
'์์ญ์ด ํ ๋ง๋ฆฌ๊ฐ ๋๋ผ์ ์ฐ์ฃผํ๋ค.']
inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
embeddings, _ = model(**inputs, return_dict=False)
score01 = cal_score(embeddings[0][0], embeddings[1][0]) # 84.09
# '์นํ๊ฐ ๋คํ์ ๊ฐ๋ก ์ง๋ฌ ๋จน์ด๋ฅผ ์ซ๋๋ค.' @ '์นํ ํ ๋ง๋ฆฌ๊ฐ ๋จน์ด ๋ค์์ ๋ฌ๋ฆฌ๊ณ ์๋ค.'
score02 = cal_score(embeddings[0][0], embeddings[2][0]) # 23.21
# '์นํ๊ฐ ๋คํ์ ๊ฐ๋ก ์ง๋ฌ ๋จน์ด๋ฅผ ์ซ๋๋ค.' @ '์์ญ์ด ํ ๋ง๋ฆฌ๊ฐ ๋๋ผ์ ์ฐ์ฃผํ๋ค.'
Update history
** Updates on Mar.08.2023 **
- Update Unsupervised Models
** Updates on Feb.24.2023 **
- Upload KoSimCSE clustering example
** Updates on Nov.15.2022 **
- Upload KoDiffCSE-unsupervised training code
** Updates on Oct.27.2022 **
- Upload KoDiffCSE-unsupervised performance
** Updates on Oct.21.2022 **
- Upload KoSimCSE-unsupervised performance
** Updates on Jun.01.2022 **
- Release KoSimCSE-multitask models
** Updates on May.23.2022 **
- Upload KoSentenceT5 training code
- Upload KoSentenceT5 performance
** Updates on Mar.01.2022 **
- Release KoSimCSE
** Updates on Feb.11.2022 **
- Upload KoSimCSE training code
- Upload KoSimCSE performance
** Updates on Jan.26.2022 **
- Upload KoSBERT training code
- Upload KoSBERT performance
Baseline Models
Baseline models used for korean sentence embedding - KLUE-PLMs
Model | Embedding size | Hidden size | # Layers | # Heads |
---|---|---|---|---|
KLUE-BERT-base | 768 | 768 | 12 | 12 |
KLUE-RoBERTa-base | 768 | 768 | 12 | 12 |
Warning
Large pre-trained models need a lot of GPU memory to train
Available Models
- Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks [SBERT]-[EMNLP 2019]
- SimCSE: Simple Contrastive Learning of Sentence Embeddings [SimCSE]-[EMNLP 2021]
- Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-Text Models [Sentence-T5]-[ACL findings 2022]
- DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings [DiffCSE]-[NAACL 2022]
Datasets
- kakaobrain KorNLU Datasets (Supervised setting)
- wiki-corpus (Unsupervised setting)
Setups
KoSentenceBERT
- ๐ค Model Training
- Dataset (Supervised)
- Training: snli_1.0_train.ko.tsv, sts-train.tsv (multi-task)
- Performance can be further improved by adding multinli data to training.
- Validation: sts-dev.tsv
- Test: sts-test.tsv
- Training: snli_1.0_train.ko.tsv, sts-train.tsv (multi-task)
KoSimCSE
- ๐ค Model Training
- Dataset (Supervised)
- Training: snli_1.0_train.ko.tsv + multinli.train.ko.tsv (Supervised setting)
- Validation: sts-dev.tsv
- Test: sts-test.tsv
- Dataset (Unsupervised)
- Training: wiki_corpus.txt
- Validation: sts-dev.tsv
- Test: sts-test.tsv
KoSentenceT5
- ๐ค Model Training
- Dataset (Supervised)
- Training: snli_1.0_train.ko.tsv + multinli.train.ko.tsv
- Validation: sts-dev.tsv
- Test: sts-test.tsv
KoDiffCSE
- ๐ค Model Training
- Dataset (Unsupervised)
- Training: wiki_corpus.txt
- Validation: sts-dev.tsv
- Test: sts-test.tsv
Performance-supervised
Model | Average | Cosine Pearson | Cosine Spearman | Euclidean Pearson | Euclidean Spearman | Manhattan Pearson | Manhattan Spearman | Dot Pearson | Dot Spearman |
---|---|---|---|---|---|---|---|---|---|
KoSBERTโ SKT | 77.40 | 78.81 | 78.47 | 77.68 | 77.78 | 77.71 | 77.83 | 75.75 | 75.22 |
KoSBERT | 80.39 | 82.13 | 82.25 | 80.67 | 80.75 | 80.69 | 80.78 | 77.96 | 77.90 |
KoSRoBERTa | 81.64 | 81.20 | 82.20 | 81.79 | 82.34 | 81.59 | 82.20 | 80.62 | 81.25 |
KoSentenceBART | 77.14 | 79.71 | 78.74 | 78.42 | 78.02 | 78.40 | 78.00 | 74.24 | 72.15 |
KoSentenceT5 | 77.83 | 80.87 | 79.74 | 80.24 | 79.36 | 80.19 | 79.27 | 72.81 | 70.17 |
KoSimCSE-BERTโ SKT | 81.32 | 82.12 | 82.56 | 81.84 | 81.63 | 81.99 | 81.74 | 79.55 | 79.19 |
KoSimCSE-BERT | 83.37 | 83.22 | 83.58 | 83.24 | 83.60 | 83.15 | 83.54 | 83.13 | 83.49 |
KoSimCSE-RoBERTa | 83.65 | 83.60 | 83.77 | 83.54 | 83.76 | 83.55 | 83.77 | 83.55 | 83.64 |
KoSimCSE-BERT-multitask | 85.71 | 85.29 | 86.02 | 85.63 | 86.01 | 85.57 | 85.97 | 85.26 | 85.93 |
KoSimCSE-RoBERTa-multitask | 85.77 | 85.08 | 86.12 | 85.84 | 86.12 | 85.83 | 86.12 | 85.03 | 85.99 |
Performance-unsupervised
Model | Average | Cosine Pearson | Cosine Spearman | Euclidean Pearson | Euclidean Spearman | Manhattan Pearson | Manhattan Spearman | Dot Pearson | Dot Spearman |
---|---|---|---|---|---|---|---|---|---|
KoSRoBERTa-baseโ | N/A | N/A | 48.96 | N/A | N/A | N/A | N/A | N/A | N/A |
KoSRoBERTa-largeโ | N/A | N/A | 51.35 | N/A | N/A | N/A | N/A | N/A | N/A |
KoSimCSE-BERT | 74.08 | 74.92 | 73.98 | 74.15 | 74.22 | 74.07 | 74.07 | 74.15 | 73.14 |
KoSimCSE-RoBERTa | 75.27 | 75.93 | 75.00 | 75.28 | 75.01 | 75.17 | 74.83 | 75.95 | 75.01 |
KoDiffCSE-RoBERTa | 77.17 | 77.73 | 76.96 | 77.21 | 76.89 | 77.11 | 76.81 | 77.74 | 76.97 |
Downstream tasks
- KoSBERT: Semantic Search, Clustering
- KoSimCSE: Semantic Search, Clustering
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
@misc{park2021klue,
title={KLUE: Korean Language Understanding Evaluation},
author={Sungjoon Park and Jihyung Moon and Sungdong Kim and Won Ik Cho and Jiyoon Han and Jangwon Park and Chisung Song and Junseong Kim and Yongsook Song and Taehwan Oh and Joohong Lee and Juhyun Oh and Sungwon Lyu and Younghoon Jeong and Inkwon Lee and Sangwoo Seo and Dongjun Lee and Hyunwoo Kim and Myeonghwa Lee and Seongbo Jang and Seungwon Do and Sunkyoung Kim and Kyungtae Lim and Jongwon Lee and Kyumin Park and Jamin Shin and Seonghyun Kim and Lucy Park and Alice Oh and Jung-Woo Ha and Kyunghyun Cho},
year={2021},
eprint={2105.09680},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@inproceedings{gao2021simcse,
title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings},
author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi},
booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
year={2021}
}
@article{ham2020kornli,
title={KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding},
author={Ham, Jiyeon and Choe, Yo Joong and Park, Kyubyong and Choi, Ilji and Soh, Hyungjoon},
journal={arXiv preprint arXiv:2004.03289},
year={2020}
}
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}
@inproceedings{chuang2022diffcse,
title={{DiffCSE}: Difference-based Contrastive Learning for Sentence Embeddings},
author={Chuang, Yung-Sung and Dangovski, Rumen and Luo, Hongyin and Zhang, Yang and Chang, Shiyu and Soljacic, Marin and Li, Shang-Wen and Yih, Wen-tau and Kim, Yoon and Glass, James},
booktitle={Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)},
year={2022}
}
- Downloads last month
- 4