metadata
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.85
ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 2.3496
- Accuracy: 0.85
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.9076 | 1.0 | 225 | 0.8234 | 0.75 |
0.3522 | 2.0 | 450 | 0.4291 | 0.9 |
0.4656 | 3.0 | 675 | 0.4656 | 0.83 |
0.2739 | 4.0 | 900 | 0.6314 | 0.9 |
0.575 | 5.0 | 1125 | 0.7786 | 0.85 |
0.4433 | 6.0 | 1350 | 1.1706 | 0.88 |
1.4075 | 7.0 | 1575 | 2.5171 | 0.83 |
0.1059 | 8.0 | 1800 | 1.5907 | 0.84 |
0.1521 | 9.0 | 2025 | 3.7424 | 0.72 |
0.5736 | 10.0 | 2250 | 2.0911 | 0.82 |
0.7552 | 11.0 | 2475 | 3.2042 | 0.81 |
0.166 | 12.0 | 2700 | 1.8762 | 0.86 |
0.0 | 13.0 | 2925 | 1.0614 | 0.91 |
1.2229 | 14.0 | 3150 | 3.0105 | 0.78 |
1.0135 | 15.0 | 3375 | 2.2024 | 0.85 |
0.098 | 16.0 | 3600 | 1.6070 | 0.87 |
0.0 | 17.0 | 3825 | 2.5323 | 0.82 |
0.0 | 18.0 | 4050 | 2.2202 | 0.86 |
0.0 | 19.0 | 4275 | 2.2681 | 0.85 |
0.0 | 20.0 | 4500 | 2.2394 | 0.86 |
1.8867 | 21.0 | 4725 | 4.2168 | 0.74 |
0.6094 | 22.0 | 4950 | 4.7781 | 0.72 |
0.3684 | 23.0 | 5175 | 2.6412 | 0.81 |
0.0 | 24.0 | 5400 | 2.8745 | 0.82 |
0.0 | 25.0 | 5625 | 2.9487 | 0.79 |
0.0 | 26.0 | 5850 | 2.5325 | 0.82 |
0.1597 | 27.0 | 6075 | 2.0327 | 0.85 |
0.0 | 28.0 | 6300 | 3.0062 | 0.84 |
0.0 | 29.0 | 6525 | 2.3104 | 0.8 |
0.0 | 30.0 | 6750 | 2.9985 | 0.83 |
0.0 | 31.0 | 6975 | 2.9385 | 0.82 |
0.0 | 32.0 | 7200 | 2.1102 | 0.87 |
0.0 | 33.0 | 7425 | 2.0060 | 0.86 |
1.1173 | 34.0 | 7650 | 1.9131 | 0.87 |
0.0 | 35.0 | 7875 | 2.4819 | 0.84 |
0.0 | 36.0 | 8100 | 2.0951 | 0.87 |
0.0 | 37.0 | 8325 | 1.9796 | 0.85 |
0.0 | 38.0 | 8550 | 2.0940 | 0.85 |
0.9059 | 39.0 | 8775 | 2.0714 | 0.85 |
0.0 | 40.0 | 9000 | 4.0729 | 0.75 |
0.0 | 41.0 | 9225 | 2.8627 | 0.83 |
0.0 | 42.0 | 9450 | 4.0389 | 0.76 |
0.0 | 43.0 | 9675 | 2.3248 | 0.85 |
0.6586 | 44.0 | 9900 | 4.9549 | 0.75 |
0.0 | 45.0 | 10125 | 3.3910 | 0.81 |
0.0 | 46.0 | 10350 | 3.9627 | 0.77 |
0.0 | 47.0 | 10575 | 3.4481 | 0.83 |
0.0 | 48.0 | 10800 | 2.7042 | 0.85 |
0.0 | 49.0 | 11025 | 2.8337 | 0.85 |
0.0 | 50.0 | 11250 | 2.4333 | 0.85 |
0.0 | 51.0 | 11475 | 2.6346 | 0.84 |
0.0 | 52.0 | 11700 | 1.8957 | 0.88 |
1.7162 | 53.0 | 11925 | 2.7006 | 0.85 |
0.0 | 54.0 | 12150 | 2.2261 | 0.86 |
0.0 | 55.0 | 12375 | 1.5562 | 0.89 |
0.0 | 56.0 | 12600 | 1.4557 | 0.91 |
0.0 | 57.0 | 12825 | 1.6862 | 0.89 |
0.0 | 58.0 | 13050 | 1.6635 | 0.9 |
0.0 | 59.0 | 13275 | 2.5130 | 0.85 |
0.0 | 60.0 | 13500 | 2.1794 | 0.84 |
0.0 | 61.0 | 13725 | 3.1630 | 0.82 |
0.0 | 62.0 | 13950 | 2.4938 | 0.84 |
0.0 | 63.0 | 14175 | 2.9464 | 0.82 |
0.0 | 64.0 | 14400 | 3.0567 | 0.81 |
0.0 | 65.0 | 14625 | 3.0951 | 0.82 |
0.0 | 66.0 | 14850 | 2.8673 | 0.82 |
0.0 | 67.0 | 15075 | 2.9092 | 0.82 |
0.0 | 68.0 | 15300 | 2.2521 | 0.85 |
0.0 | 69.0 | 15525 | 2.5049 | 0.82 |
0.0 | 70.0 | 15750 | 2.4376 | 0.84 |
0.0 | 71.0 | 15975 | 2.6660 | 0.82 |
0.0 | 72.0 | 16200 | 2.5182 | 0.86 |
0.0 | 73.0 | 16425 | 2.3814 | 0.85 |
0.0 | 74.0 | 16650 | 2.3093 | 0.85 |
0.0 | 75.0 | 16875 | 2.3014 | 0.85 |
0.0 | 76.0 | 17100 | 2.3845 | 0.86 |
0.0 | 77.0 | 17325 | 2.2978 | 0.85 |
0.0 | 78.0 | 17550 | 2.4215 | 0.85 |
0.7047 | 79.0 | 17775 | 2.3462 | 0.84 |
0.0 | 80.0 | 18000 | 2.3230 | 0.85 |
0.0 | 81.0 | 18225 | 2.3648 | 0.85 |
0.0 | 82.0 | 18450 | 2.2962 | 0.85 |
0.0 | 83.0 | 18675 | 2.4231 | 0.84 |
0.0 | 84.0 | 18900 | 2.2588 | 0.86 |
0.0 | 85.0 | 19125 | 2.4144 | 0.84 |
0.0 | 86.0 | 19350 | 2.4220 | 0.84 |
0.0 | 87.0 | 19575 | 2.3860 | 0.84 |
0.0 | 88.0 | 19800 | 2.3356 | 0.84 |
0.0 | 89.0 | 20025 | 2.3223 | 0.85 |
0.0 | 90.0 | 20250 | 2.3554 | 0.83 |
0.0 | 91.0 | 20475 | 2.3344 | 0.84 |
0.6906 | 92.0 | 20700 | 2.3568 | 0.85 |
0.0 | 93.0 | 20925 | 2.3905 | 0.84 |
0.0 | 94.0 | 21150 | 2.3920 | 0.85 |
0.0 | 95.0 | 21375 | 2.3935 | 0.85 |
0.0 | 96.0 | 21600 | 2.3392 | 0.85 |
0.0 | 97.0 | 21825 | 2.3437 | 0.85 |
0.0 | 98.0 | 22050 | 2.3434 | 0.85 |
0.0 | 99.0 | 22275 | 2.3503 | 0.85 |
0.0 | 100.0 | 22500 | 2.3496 | 0.85 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0
- Datasets 2.15.0
- Tokenizers 0.15.0