whisper-tiny-en / README.md
BanUrsus's picture
Update README.md
83cc74a verified
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: whisper-tiny-en
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: minds14
          type: minds14
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 0.2883917775090689

whisper-tiny-en

This model is a fine-tuned version of openai/whisper-tiny on the minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7626
  • Wer Ortho: 0.2891
  • Wer: 0.2884

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0005 35.71 500 0.6319 0.2684 0.2684
0.0002 71.43 1000 0.6820 0.2709 0.2709
0.0001 107.14 1500 0.7092 0.2740 0.2739
0.0001 142.86 2000 0.7275 0.2854 0.2848
0.0001 178.57 2500 0.7423 0.2885 0.2878
0.0 214.29 3000 0.7531 0.2898 0.2890
0.0 250.0 3500 0.7604 0.2898 0.2890
0.0 285.71 4000 0.7626 0.2891 0.2884

Framework versions

  • Transformers 4.39.2
  • Pytorch 1.13.0+cu117
  • Datasets 2.16.1
  • Tokenizers 0.15.1