|
|
--- |
|
|
library_name: transformers |
|
|
license: mit |
|
|
base_model: roberta-base |
|
|
tags: |
|
|
- named-entity-recognition |
|
|
- kanuri |
|
|
- african-language |
|
|
- pii-detection |
|
|
- token-classification |
|
|
- generated_from_trainer |
|
|
datasets: |
|
|
- Beijuka/Multilingual_PII_NER_dataset |
|
|
metrics: |
|
|
- precision |
|
|
- recall |
|
|
- f1 |
|
|
- accuracy |
|
|
model-index: |
|
|
- name: multilingual-roberta-base-kanuri-ner-v1 |
|
|
results: |
|
|
- task: |
|
|
name: Token Classification |
|
|
type: token-classification |
|
|
dataset: |
|
|
name: Beijuka/Multilingual_PII_NER_dataset |
|
|
type: Beijuka/Multilingual_PII_NER_dataset |
|
|
args: 'split: train+validation+test' |
|
|
metrics: |
|
|
- name: Precision |
|
|
type: precision |
|
|
value: 0.9576167076167076 |
|
|
- name: Recall |
|
|
type: recall |
|
|
value: 0.9301909307875895 |
|
|
- name: F1 |
|
|
type: f1 |
|
|
value: 0.9437046004842615 |
|
|
- name: Accuracy |
|
|
type: accuracy |
|
|
value: 0.9867406100327704 |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# multilingual-roberta-base-kanuri-ner-v1 |
|
|
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the Beijuka/Multilingual_PII_NER_dataset dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.0957 |
|
|
- Precision: 0.9576 |
|
|
- Recall: 0.9302 |
|
|
- F1: 0.9437 |
|
|
- Accuracy: 0.9867 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 5e-05 |
|
|
- train_batch_size: 8 |
|
|
- eval_batch_size: 8 |
|
|
- seed: 42 |
|
|
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
|
- lr_scheduler_type: linear |
|
|
- num_epochs: 20 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
|
| No log | 1.0 | 301 | 0.1120 | 0.8716 | 0.8372 | 0.8541 | 0.9691 | |
|
|
| 0.187 | 2.0 | 602 | 0.0885 | 0.8735 | 0.9206 | 0.8964 | 0.9750 | |
|
|
| 0.187 | 3.0 | 903 | 0.0975 | 0.8666 | 0.8911 | 0.8787 | 0.9742 | |
|
|
| 0.0664 | 4.0 | 1204 | 0.0992 | 0.8715 | 0.9194 | 0.8948 | 0.9764 | |
|
|
| 0.0458 | 5.0 | 1505 | 0.0900 | 0.9008 | 0.9228 | 0.9116 | 0.9767 | |
|
|
| 0.0458 | 6.0 | 1806 | 0.0900 | 0.9050 | 0.9267 | 0.9157 | 0.9800 | |
|
|
| 0.0311 | 7.0 | 2107 | 0.1075 | 0.8921 | 0.9328 | 0.9120 | 0.9787 | |
|
|
| 0.0311 | 8.0 | 2408 | 0.1353 | 0.8920 | 0.9311 | 0.9111 | 0.9791 | |
|
|
| 0.0215 | 9.0 | 2709 | 0.1167 | 0.9090 | 0.9267 | 0.9177 | 0.9792 | |
|
|
| 0.0109 | 10.0 | 3010 | 0.1201 | 0.9082 | 0.9289 | 0.9184 | 0.9807 | |
|
|
| 0.0109 | 11.0 | 3311 | 0.1304 | 0.9110 | 0.9272 | 0.9191 | 0.9810 | |
|
|
| 0.0064 | 12.0 | 3612 | 0.1823 | 0.8918 | 0.9344 | 0.9126 | 0.9788 | |
|
|
| 0.0064 | 13.0 | 3913 | 0.1507 | 0.9038 | 0.9289 | 0.9162 | 0.9803 | |
|
|
| 0.0042 | 14.0 | 4214 | 0.1763 | 0.8990 | 0.935 | 0.9167 | 0.9807 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.55.4 |
|
|
- Pytorch 2.8.0+cu126 |
|
|
- Datasets 4.0.0 |
|
|
- Tokenizers 0.21.4 |
|
|
|