ST2_modernbert-base_product_V1
This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.5744
- F1: 0.5126
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 36
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
6.5711 | 1.0 | 124 | 6.1700 | 0.0106 |
5.9394 | 2.0 | 248 | 4.8593 | 0.1670 |
4.6045 | 3.0 | 372 | 3.8976 | 0.3029 |
2.9945 | 4.0 | 496 | 3.3339 | 0.4090 |
0.6088 | 5.0 | 620 | 3.0378 | 0.4559 |
0.2897 | 6.0 | 744 | 3.0109 | 0.4816 |
0.1962 | 7.0 | 868 | 3.1202 | 0.4717 |
0.1025 | 8.0 | 992 | 3.0573 | 0.4715 |
0.0459 | 9.0 | 1116 | 3.1049 | 0.4814 |
0.0489 | 10.0 | 1240 | 3.1277 | 0.4863 |
0.0292 | 11.0 | 1364 | 3.0771 | 0.4875 |
0.0426 | 12.0 | 1488 | 3.1132 | 0.4936 |
0.0164 | 13.0 | 1612 | 3.0944 | 0.5108 |
0.0447 | 14.0 | 1736 | 3.1211 | 0.4910 |
0.0103 | 15.0 | 1860 | 3.0736 | 0.5010 |
0.0134 | 16.0 | 1984 | 3.1056 | 0.4982 |
0.0082 | 17.0 | 2108 | 3.0771 | 0.4997 |
0.0068 | 18.0 | 2232 | 3.0851 | 0.5018 |
0.0088 | 19.0 | 2356 | 3.0996 | 0.4991 |
0.0024 | 20.0 | 2480 | 3.0850 | 0.5086 |
0.0059 | 21.0 | 2604 | 3.0509 | 0.5026 |
0.0048 | 22.0 | 2728 | 3.1242 | 0.5047 |
0.004 | 23.0 | 2852 | 3.1142 | 0.4969 |
0.0041 | 24.0 | 2976 | 3.1523 | 0.5023 |
0.0041 | 25.0 | 3100 | 3.1448 | 0.4995 |
0.0028 | 26.0 | 3224 | 3.1528 | 0.5006 |
0.0057 | 27.0 | 3348 | 3.1483 | 0.5007 |
0.0029 | 28.0 | 3472 | 3.1724 | 0.5020 |
0.0033 | 29.0 | 3596 | 3.1834 | 0.4958 |
0.0034 | 30.0 | 3720 | 3.1474 | 0.4977 |
0.0038 | 31.0 | 3844 | 3.1788 | 0.4989 |
0.0037 | 32.0 | 3968 | 3.1785 | 0.4935 |
0.0034 | 33.0 | 4092 | 3.1674 | 0.4987 |
0.0027 | 34.0 | 4216 | 3.1771 | 0.4987 |
0.0041 | 35.0 | 4340 | 3.1944 | 0.4945 |
0.0019 | 36.0 | 4464 | 3.1890 | 0.5032 |
0.0028 | 37.0 | 4588 | 3.1763 | 0.4951 |
0.0022 | 38.0 | 4712 | 3.2159 | 0.4958 |
0.0037 | 39.0 | 4836 | 3.2109 | 0.5032 |
0.0026 | 40.0 | 4960 | 3.1828 | 0.4959 |
0.0028 | 41.0 | 5084 | 3.2274 | 0.4982 |
0.0025 | 42.0 | 5208 | 3.1930 | 0.4970 |
0.0036 | 43.0 | 5332 | 3.2186 | 0.4945 |
0.0032 | 44.0 | 5456 | 3.2385 | 0.5010 |
0.0016 | 45.0 | 5580 | 3.2317 | 0.5019 |
0.0034 | 46.0 | 5704 | 3.2135 | 0.5036 |
0.0035 | 47.0 | 5828 | 3.3843 | 0.4602 |
0.1754 | 48.0 | 5952 | 3.2086 | 0.4761 |
0.1549 | 49.0 | 6076 | 3.3204 | 0.4804 |
0.0232 | 50.0 | 6200 | 3.3169 | 0.4906 |
0.0173 | 51.0 | 6324 | 3.3614 | 0.4905 |
0.0149 | 52.0 | 6448 | 3.3885 | 0.4814 |
0.0085 | 53.0 | 6572 | 3.3473 | 0.4901 |
0.0049 | 54.0 | 6696 | 3.3235 | 0.4996 |
0.0027 | 55.0 | 6820 | 3.3272 | 0.4986 |
0.0013 | 56.0 | 6944 | 3.3385 | 0.5022 |
0.0039 | 57.0 | 7068 | 3.3398 | 0.5050 |
0.0025 | 58.0 | 7192 | 3.3412 | 0.5063 |
0.0025 | 59.0 | 7316 | 3.3466 | 0.5044 |
0.0022 | 60.0 | 7440 | 3.3510 | 0.5054 |
0.0018 | 61.0 | 7564 | 3.3570 | 0.5063 |
0.003 | 62.0 | 7688 | 3.3553 | 0.5047 |
0.0027 | 63.0 | 7812 | 3.3642 | 0.5053 |
0.0027 | 64.0 | 7936 | 3.3615 | 0.5061 |
0.0019 | 65.0 | 8060 | 3.3664 | 0.5053 |
0.003 | 66.0 | 8184 | 3.3675 | 0.5059 |
0.0028 | 67.0 | 8308 | 3.3707 | 0.5063 |
0.0023 | 68.0 | 8432 | 3.3754 | 0.5060 |
0.0018 | 69.0 | 8556 | 3.3743 | 0.5061 |
0.0039 | 70.0 | 8680 | 3.3793 | 0.5080 |
0.0029 | 71.0 | 8804 | 3.3868 | 0.5101 |
0.0017 | 72.0 | 8928 | 3.3829 | 0.5062 |
0.0035 | 73.0 | 9052 | 3.3913 | 0.5072 |
0.0026 | 74.0 | 9176 | 3.3910 | 0.5085 |
0.0029 | 75.0 | 9300 | 3.3827 | 0.5110 |
0.0018 | 76.0 | 9424 | 3.3985 | 0.5084 |
0.0027 | 77.0 | 9548 | 3.3946 | 0.5068 |
0.0021 | 78.0 | 9672 | 3.3975 | 0.5113 |
0.0025 | 79.0 | 9796 | 3.3949 | 0.5066 |
0.0028 | 80.0 | 9920 | 3.4022 | 0.5098 |
0.0015 | 81.0 | 10044 | 3.4100 | 0.5082 |
0.0026 | 82.0 | 10168 | 3.3912 | 0.5120 |
0.0028 | 83.0 | 10292 | 3.4092 | 0.5122 |
0.0031 | 84.0 | 10416 | 3.3857 | 0.5125 |
0.002 | 85.0 | 10540 | 3.4220 | 0.5096 |
0.0013 | 86.0 | 10664 | 3.4071 | 0.5141 |
0.003 | 87.0 | 10788 | 3.4105 | 0.5148 |
0.002 | 88.0 | 10912 | 3.4124 | 0.5130 |
0.0025 | 89.0 | 11036 | 3.4248 | 0.5123 |
0.0028 | 90.0 | 11160 | 3.4086 | 0.5119 |
0.0022 | 91.0 | 11284 | 3.4224 | 0.5113 |
0.0024 | 92.0 | 11408 | 3.4295 | 0.5162 |
0.0022 | 93.0 | 11532 | 3.4159 | 0.5138 |
0.0025 | 94.0 | 11656 | 3.4153 | 0.5130 |
0.0023 | 95.0 | 11780 | 3.4355 | 0.5133 |
0.0027 | 96.0 | 11904 | 3.4323 | 0.5174 |
0.0018 | 97.0 | 12028 | 3.3888 | 0.5160 |
0.0029 | 98.0 | 12152 | 3.4415 | 0.5125 |
0.0028 | 99.0 | 12276 | 3.4289 | 0.5122 |
0.0024 | 100.0 | 12400 | 3.4408 | 0.5171 |
0.002 | 101.0 | 12524 | 3.4226 | 0.5148 |
0.0025 | 102.0 | 12648 | 3.4544 | 0.5147 |
0.0019 | 103.0 | 12772 | 3.4467 | 0.5148 |
0.0024 | 104.0 | 12896 | 3.4552 | 0.5188 |
0.0026 | 105.0 | 13020 | 3.4581 | 0.5178 |
0.0023 | 106.0 | 13144 | 3.4570 | 0.5159 |
0.0019 | 107.0 | 13268 | 3.4456 | 0.5136 |
0.0019 | 108.0 | 13392 | 3.4553 | 0.5170 |
0.0024 | 109.0 | 13516 | 3.4750 | 0.5115 |
0.0015 | 110.0 | 13640 | 3.4556 | 0.5195 |
0.0027 | 111.0 | 13764 | 3.4916 | 0.5207 |
0.0023 | 112.0 | 13888 | 3.4637 | 0.5120 |
0.0014 | 113.0 | 14012 | 3.4714 | 0.5141 |
0.0026 | 114.0 | 14136 | 3.4919 | 0.5182 |
0.0024 | 115.0 | 14260 | 3.4987 | 0.5169 |
0.0016 | 116.0 | 14384 | 3.5065 | 0.5179 |
0.0023 | 117.0 | 14508 | 3.4585 | 0.5154 |
0.0019 | 118.0 | 14632 | 3.4927 | 0.5139 |
0.0014 | 119.0 | 14756 | 3.4963 | 0.5150 |
0.0031 | 120.0 | 14880 | 3.5130 | 0.5190 |
0.0021 | 121.0 | 15004 | 3.4772 | 0.5117 |
0.0021 | 122.0 | 15128 | 3.5224 | 0.5131 |
0.003 | 123.0 | 15252 | 3.4794 | 0.5165 |
0.0013 | 124.0 | 15376 | 3.4911 | 0.5099 |
0.0064 | 125.0 | 15500 | 3.5023 | 0.4909 |
0.0238 | 126.0 | 15624 | 3.3523 | 0.5030 |
0.015 | 127.0 | 15748 | 3.4065 | 0.5028 |
0.0039 | 128.0 | 15872 | 3.3460 | 0.4963 |
0.0067 | 129.0 | 15996 | 3.3763 | 0.5062 |
0.0021 | 130.0 | 16120 | 3.3880 | 0.5077 |
0.0018 | 131.0 | 16244 | 3.3969 | 0.5093 |
0.0022 | 132.0 | 16368 | 3.4017 | 0.5100 |
0.0021 | 133.0 | 16492 | 3.4123 | 0.5084 |
0.002 | 134.0 | 16616 | 3.4158 | 0.5122 |
0.0019 | 135.0 | 16740 | 3.4215 | 0.5117 |
0.0017 | 136.0 | 16864 | 3.4257 | 0.5103 |
0.0023 | 137.0 | 16988 | 3.4289 | 0.5141 |
0.0018 | 138.0 | 17112 | 3.4344 | 0.5101 |
0.0023 | 139.0 | 17236 | 3.4371 | 0.5110 |
0.0014 | 140.0 | 17360 | 3.4411 | 0.5133 |
0.0019 | 141.0 | 17484 | 3.4437 | 0.5127 |
0.002 | 142.0 | 17608 | 3.4484 | 0.5138 |
0.002 | 143.0 | 17732 | 3.4503 | 0.5127 |
0.0017 | 144.0 | 17856 | 3.4534 | 0.5117 |
0.0015 | 145.0 | 17980 | 3.4578 | 0.5143 |
0.0015 | 146.0 | 18104 | 3.4613 | 0.5099 |
0.002 | 147.0 | 18228 | 3.4645 | 0.5109 |
0.0012 | 148.0 | 18352 | 3.4679 | 0.5097 |
0.0026 | 149.0 | 18476 | 3.4691 | 0.5092 |
0.0016 | 150.0 | 18600 | 3.4734 | 0.5088 |
0.0017 | 151.0 | 18724 | 3.4754 | 0.5102 |
0.0023 | 152.0 | 18848 | 3.4798 | 0.5114 |
0.0024 | 153.0 | 18972 | 3.4822 | 0.5082 |
0.001 | 154.0 | 19096 | 3.4831 | 0.5104 |
0.002 | 155.0 | 19220 | 3.4885 | 0.5083 |
0.0016 | 156.0 | 19344 | 3.4904 | 0.5104 |
0.0014 | 157.0 | 19468 | 3.4935 | 0.5101 |
0.0021 | 158.0 | 19592 | 3.4980 | 0.5103 |
0.0021 | 159.0 | 19716 | 3.4991 | 0.5113 |
0.0015 | 160.0 | 19840 | 3.5031 | 0.5100 |
0.0026 | 161.0 | 19964 | 3.5050 | 0.5101 |
0.0013 | 162.0 | 20088 | 3.5095 | 0.5089 |
0.0018 | 163.0 | 20212 | 3.5128 | 0.5099 |
0.0021 | 164.0 | 20336 | 3.5148 | 0.5116 |
0.0021 | 165.0 | 20460 | 3.5149 | 0.5116 |
0.0017 | 166.0 | 20584 | 3.5189 | 0.5095 |
0.0018 | 167.0 | 20708 | 3.5232 | 0.5120 |
0.0018 | 168.0 | 20832 | 3.5277 | 0.5099 |
0.0024 | 169.0 | 20956 | 3.5277 | 0.5115 |
0.0015 | 170.0 | 21080 | 3.5282 | 0.5111 |
0.0015 | 171.0 | 21204 | 3.5295 | 0.5107 |
0.0013 | 172.0 | 21328 | 3.5328 | 0.5105 |
0.0044 | 173.0 | 21452 | 3.5402 | 0.5098 |
0.0023 | 174.0 | 21576 | 3.5429 | 0.5120 |
0.0021 | 175.0 | 21700 | 3.5419 | 0.5099 |
0.0014 | 176.0 | 21824 | 3.5467 | 0.5116 |
0.0025 | 177.0 | 21948 | 3.5475 | 0.5122 |
0.0017 | 178.0 | 22072 | 3.5460 | 0.5117 |
0.0015 | 179.0 | 22196 | 3.5513 | 0.5108 |
0.0019 | 180.0 | 22320 | 3.5513 | 0.5135 |
0.0016 | 181.0 | 22444 | 3.5539 | 0.5128 |
0.0022 | 182.0 | 22568 | 3.5585 | 0.5131 |
0.0013 | 183.0 | 22692 | 3.5599 | 0.5150 |
0.0012 | 184.0 | 22816 | 3.5590 | 0.5151 |
0.0023 | 185.0 | 22940 | 3.5587 | 0.5142 |
0.002 | 186.0 | 23064 | 3.5601 | 0.5145 |
0.0011 | 187.0 | 23188 | 3.5630 | 0.5133 |
0.0019 | 188.0 | 23312 | 3.5662 | 0.5163 |
0.0021 | 189.0 | 23436 | 3.5643 | 0.5132 |
0.0012 | 190.0 | 23560 | 3.5684 | 0.5128 |
0.0021 | 191.0 | 23684 | 3.5681 | 0.5138 |
0.0019 | 192.0 | 23808 | 3.5700 | 0.5139 |
0.0018 | 193.0 | 23932 | 3.5721 | 0.5137 |
0.0019 | 194.0 | 24056 | 3.5742 | 0.5161 |
0.0017 | 195.0 | 24180 | 3.5719 | 0.5118 |
0.0016 | 196.0 | 24304 | 3.5718 | 0.5160 |
0.0018 | 197.0 | 24428 | 3.5737 | 0.5135 |
0.002 | 198.0 | 24552 | 3.5740 | 0.5144 |
0.001 | 199.0 | 24676 | 3.5746 | 0.5143 |
0.0014 | 200.0 | 24800 | 3.5744 | 0.5126 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 17
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for BenPhan/ST2_modernbert-base_product_V1
Base model
answerdotai/ModernBERT-base