ST2_modernbert-large_hazard_V2

This model is a fine-tuned version of answerdotai/ModernBERT-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6701
  • F1: 0.8497

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 36
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss F1
1.8843 1.0 128 0.8050 0.7972
0.7729 2.0 256 0.7046 0.8163
0.483 3.0 384 0.8013 0.8384
0.2768 4.0 512 0.8839 0.8348
0.1772 5.0 640 0.9444 0.8257
0.1544 6.0 768 0.9699 0.8292
0.1182 7.0 896 1.1826 0.8304
0.06 8.0 1024 1.0771 0.8334
0.0702 9.0 1152 1.0485 0.8435
0.0525 10.0 1280 1.0886 0.8406
0.0288 11.0 1408 1.2292 0.8484
0.0292 12.0 1536 1.1577 0.8513
0.0187 13.0 1664 1.2895 0.8478
0.012 14.0 1792 1.1460 0.8517
0.0066 15.0 1920 1.2281 0.8498
0.0048 16.0 2048 1.2578 0.8547
0.0034 17.0 2176 1.2525 0.8482
0.0028 18.0 2304 1.2799 0.8483
0.0038 19.0 2432 1.2747 0.8502
0.0022 20.0 2560 1.2907 0.8488
0.0021 21.0 2688 1.2864 0.8509
0.0034 22.0 2816 1.3089 0.8464
0.0029 23.0 2944 1.3077 0.8502
0.0015 24.0 3072 1.3103 0.8480
0.0021 25.0 3200 1.3275 0.8482
0.0033 26.0 3328 1.2898 0.8483
0.0015 27.0 3456 1.3258 0.8496
0.0018 28.0 3584 1.3326 0.8482
0.0022 29.0 3712 1.3351 0.8480
0.0027 30.0 3840 1.3325 0.8480
0.0014 31.0 3968 1.3183 0.8502
0.0023 32.0 4096 1.3379 0.8505
0.0026 33.0 4224 1.3498 0.8477
0.0009 34.0 4352 1.3428 0.8515
0.0027 35.0 4480 1.3274 0.8457
0.0024 36.0 4608 1.3600 0.8516
0.0003 37.0 4736 1.3427 0.8497
0.0029 38.0 4864 1.3627 0.8501
0.0023 39.0 4992 1.3649 0.8508
0.0017 40.0 5120 1.3472 0.8537
0.0028 41.0 5248 1.3738 0.8505
0.0021 42.0 5376 1.3650 0.8503
0.0014 43.0 5504 1.3771 0.8502
0.0014 44.0 5632 1.3775 0.8493
0.0013 45.0 5760 1.3687 0.8505
0.004 46.0 5888 1.3879 0.8480
0.0021 47.0 6016 1.3839 0.8513
0.0025 48.0 6144 1.3993 0.8505
0.002 49.0 6272 1.3779 0.8474
0.0708 50.0 6400 1.2382 0.7673
0.2818 51.0 6528 1.1139 0.8300
0.119 52.0 6656 1.1885 0.8333
0.0869 53.0 6784 1.3279 0.8517
0.0256 54.0 6912 1.2980 0.8349
0.0131 55.0 7040 1.3607 0.8446
0.0196 56.0 7168 1.3559 0.8439
0.0079 57.0 7296 1.3945 0.8471
0.0104 58.0 7424 1.3243 0.8511
0.0068 59.0 7552 1.3076 0.8447
0.0018 60.0 7680 1.3236 0.8504
0.0023 61.0 7808 1.3291 0.8528
0.002 62.0 7936 1.3434 0.8528
0.0018 63.0 8064 1.3511 0.8527
0.0011 64.0 8192 1.3616 0.8528
0.002 65.0 8320 1.3664 0.8527
0.0011 66.0 8448 1.3727 0.8518
0.0016 67.0 8576 1.3782 0.8499
0.0015 68.0 8704 1.3856 0.8499
0.0011 69.0 8832 1.3911 0.8499
0.0029 70.0 8960 1.3953 0.8499
0.0011 71.0 9088 1.3985 0.8481
0.0021 72.0 9216 1.3969 0.8490
0.0014 73.0 9344 1.4042 0.8496
0.0013 74.0 9472 1.4017 0.8490
0.0022 75.0 9600 1.4120 0.8472
0.0013 76.0 9728 1.4123 0.8478
0.0019 77.0 9856 1.4162 0.8464
0.0015 78.0 9984 1.4161 0.8472
0.0019 79.0 10112 1.4222 0.8457
0.0015 80.0 10240 1.4282 0.8464
0.0016 81.0 10368 1.4310 0.8457
0.0024 82.0 10496 1.4350 0.8457
0.0022 83.0 10624 1.4294 0.8457
0.001 84.0 10752 1.4353 0.8457
0.0013 85.0 10880 1.4411 0.8457
0.002 86.0 11008 1.4430 0.8457
0.0021 87.0 11136 1.4475 0.8457
0.0009 88.0 11264 1.4501 0.8464
0.0021 89.0 11392 1.4514 0.8474
0.0018 90.0 11520 1.4572 0.8474
0.0014 91.0 11648 1.4623 0.8474
0.0024 92.0 11776 1.4607 0.8474
0.0017 93.0 11904 1.4692 0.8465
0.0016 94.0 12032 1.4718 0.8474
0.0021 95.0 12160 1.4728 0.8474
0.0013 96.0 12288 1.4704 0.8474
0.0017 97.0 12416 1.4814 0.8465
0.0015 98.0 12544 1.4810 0.8465
0.0014 99.0 12672 1.4789 0.8465
0.0015 100.0 12800 1.4855 0.8465
0.0018 101.0 12928 1.4812 0.8479
0.0017 102.0 13056 1.4880 0.8465
0.0015 103.0 13184 1.4897 0.8465
0.0016 104.0 13312 1.4935 0.8465
0.0017 105.0 13440 1.4956 0.8465
0.0022 106.0 13568 1.5053 0.8472
0.0012 107.0 13696 1.5083 0.8485
0.0018 108.0 13824 1.4983 0.8472
0.0007 109.0 13952 1.5016 0.8465
0.0021 110.0 14080 1.5054 0.8485
0.0014 111.0 14208 1.5118 0.8472
0.0021 112.0 14336 1.5125 0.8463
0.0007 113.0 14464 1.5155 0.8485
0.0017 114.0 14592 1.5181 0.8472
0.0013 115.0 14720 1.5199 0.8485
0.001 116.0 14848 1.5237 0.8472
0.0015 117.0 14976 1.5314 0.8485
0.0016 118.0 15104 1.5173 0.8485
0.0008 119.0 15232 1.5214 0.8485
0.0023 120.0 15360 1.5386 0.8485
0.0016 121.0 15488 1.5263 0.8500
0.002 122.0 15616 1.5669 0.8459
0.0014 123.0 15744 1.5301 0.8498
0.0016 124.0 15872 1.5602 0.8523
0.0017 125.0 16000 1.5304 0.8466
0.0012 126.0 16128 1.5654 0.8505
0.0016 127.0 16256 1.5521 0.8485
0.0016 128.0 16384 1.5729 0.8471
0.002 129.0 16512 1.5592 0.8505
0.0012 130.0 16640 1.5771 0.8505
0.0014 131.0 16768 1.5593 0.8505
0.0023 132.0 16896 1.5780 0.8471
0.0015 133.0 17024 1.5709 0.8505
0.0011 134.0 17152 1.5751 0.8471
0.002 135.0 17280 1.5774 0.8505
0.0014 136.0 17408 1.5873 0.8471
0.0017 137.0 17536 1.5800 0.8471
0.0009 138.0 17664 1.5965 0.8469
0.0023 139.0 17792 1.5893 0.8473
0.0012 140.0 17920 1.5841 0.8474
0.0013 141.0 18048 1.5947 0.8511
0.0021 142.0 18176 1.5862 0.8506
0.0014 143.0 18304 1.5841 0.8476
0.001 144.0 18432 1.5877 0.8505
0.0017 145.0 18560 1.6091 0.8475
0.0016 146.0 18688 1.5897 0.8500
0.0015 147.0 18816 1.6097 0.8476
0.0013 148.0 18944 1.5787 0.8465
0.0011 149.0 19072 1.6175 0.8473
0.0018 150.0 19200 1.5987 0.8506
0.0013 151.0 19328 1.6082 0.8476
0.0006 152.0 19456 1.6167 0.8480
0.0027 153.0 19584 1.6071 0.8476
0.0013 154.0 19712 1.6168 0.8476
0.0018 155.0 19840 1.6168 0.8473
0.0009 156.0 19968 1.6226 0.8476
0.0016 157.0 20096 1.6181 0.8476
0.0013 158.0 20224 1.6293 0.8473
0.001 159.0 20352 1.6289 0.8476
0.0022 160.0 20480 1.6300 0.8476
0.001 161.0 20608 1.6345 0.8476
0.0015 162.0 20736 1.6372 0.8482
0.0019 163.0 20864 1.6363 0.8476
0.0009 164.0 20992 1.6382 0.8476
0.0017 165.0 21120 1.6452 0.8482
0.0006 166.0 21248 1.6411 0.8476
0.0017 167.0 21376 1.6400 0.8476
0.0017 168.0 21504 1.6405 0.8476
0.0015 169.0 21632 1.6504 0.8476
0.001 170.0 21760 1.6503 0.8482
0.0016 171.0 21888 1.6479 0.8480
0.0013 172.0 22016 1.6559 0.8482
0.001 173.0 22144 1.6468 0.8491
0.0017 174.0 22272 1.6544 0.8476
0.0011 175.0 22400 1.6523 0.8491
0.0013 176.0 22528 1.6539 0.8491
0.0012 177.0 22656 1.6566 0.8482
0.0015 178.0 22784 1.6589 0.8497
0.0015 179.0 22912 1.6624 0.8497
0.001 180.0 23040 1.6640 0.8497
0.0014 181.0 23168 1.6628 0.8497
0.0016 182.0 23296 1.6616 0.8491
0.0008 183.0 23424 1.6655 0.8497
0.0016 184.0 23552 1.6648 0.8491
0.0008 185.0 23680 1.6655 0.8491
0.0016 186.0 23808 1.6661 0.8491
0.0012 187.0 23936 1.6652 0.8491
0.001 188.0 24064 1.6690 0.8491
0.0014 189.0 24192 1.6676 0.8497
0.0012 190.0 24320 1.6671 0.8491
0.0012 191.0 24448 1.6690 0.8497
0.0008 192.0 24576 1.6696 0.8497
0.0016 193.0 24704 1.6691 0.8497
0.0012 194.0 24832 1.6703 0.8497
0.0012 195.0 24960 1.6701 0.8497
0.0014 196.0 25088 1.6689 0.8497
0.0014 197.0 25216 1.6698 0.8497
0.001 198.0 25344 1.6697 0.8497
0.0012 199.0 25472 1.6698 0.8497
0.0012 200.0 25600 1.6701 0.8497

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
6
Safetensors
Model size
396M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for BenPhan/ST2_modernbert-large_hazard_V2

Finetuned
(49)
this model