Berly00's picture
End of training
b744496 verified
metadata
language:
  - es
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper tiny es - m1
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fleurs
          type: google/fleurs
          config: es_419
          split: None
          args: 'config: es_419, split: test, train'
        metrics:
          - name: Wer
            type: wer
            value: 18.93646290086837

Whisper tiny es - m1

This model is a fine-tuned version of openai/whisper-tiny on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4496
  • Wer: 18.9365

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • training_steps: 1500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.2138 1.4286 250 0.4507 20.0241
0.9388 2.8571 500 0.4302 18.4378
0.8286 4.2857 750 0.4378 18.7043
0.7681 5.7143 1000 0.4426 18.7645
0.6715 7.1429 1250 0.4477 18.8763
0.5874 8.5714 1500 0.4496 18.9365

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1