|
--- |
|
license: mit |
|
language: |
|
- bn |
|
pipeline_tag: table-question-answering |
|
library_name: |
|
-transformer |
|
-unsloth |
|
base_model: Bikas0/Bengali-Question-Answer-Llama3 |
|
|
|
--- |
|
|
|
```bash |
|
from transformers import TextStreamer |
|
from unsloth import FastLanguageModel |
|
import torch |
|
alpaca_prompt = """ |
|
### Instruction: |
|
{} |
|
|
|
### Input: |
|
{} |
|
|
|
### Response: |
|
{}""" |
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name = "Bikas0/Bengali-Question-Answer-Llama3", # YOUR MODEL YOU USED FOR TRAINING |
|
max_seq_length = 2048, |
|
dtype = torch.float16, |
|
load_in_4bit = True, |
|
) |
|
FastLanguageModel.for_inference(model) # Enable native 2x faster inference |
|
inputs = tokenizer( |
|
[ |
|
alpaca_prompt.format( |
|
"Please provide a detailed answer to the following question", # instruction |
|
"বাংলা একাডেমি আইন কোন কারণে সদস্যপদ বাতিল করা হবে ?", # input |
|
# সড়ক রক্ষণাবেক্ষণ তহবিল বোর্ড আইন, ২০১৩ অনুযায়ী, তহবিলের উৎসসমূহ কী কী? |
|
"", # output - leave this blank for generation! |
|
) |
|
], return_tensors = "pt").to("cuda") |
|
|
|
text_streamer = TextStreamer(tokenizer) |
|
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 2048) |
|
|
|
``` |