license: mit
language:
- en
library_name: transformers
Model Card for MMICL
Temporal Demo for MMICL
Playground for MMICL-FLANT5XXL support multi-image input as well as video input.
Model Details
MMICL(Multi-Modal In-Context Learning) is a multimodal vision-language model that incorporates blip2/instrcutblip. It has the ability to analyze and understand multiple images, as well as follow instructions.
Model Description
MMICL outperforms the VL model of the same size and performs exceptionally well on complex visual reasoning datasets. Till 21st Aug. 2023, it achieves state-of-the-art performance on both multimodal task leaderboards and a wide range of vision-language tasks. Furthermore, it showcases new capabilities in video understanding and multimodal in-context learning (M-ICL).
Capability of multiple images refering and reasoning
Manually constructed In-context instruction tuning dataset
Visual Encoder: VIT-L from CLIP/ ViT-G/14 from EVA-CLIP
Pre-trained LLM: FlanT5-XL/ FlanT5-XXL/ Vicuna-7B/ Vicuna-13B
- Developed by: [More Information Needed]
- License: MIT
- Finetuned from model : instructblip-flan-t5-xxl
- Repository: MMICL
How to Get Started with the Model
# For T5 based model
from model.instructblip import InstructBlipConfig, InstructBlipModel, InstructBlipPreTrainedModel,InstructBlipForConditionalGeneration,InstructBlipProcessor
import datasets
import json
import transformers
from PIL import Image
import torch
from model.blip2 import Blip2Processor,Blip2ForConditionalGeneration
from model.blip2 import Blip2Config
model_type="instructblip"
model_ckpt="BleachNick/MMICL-Instructblip-T5-xxl"
if 'blip2' in model_type:
model = Blip2ForConditionalGeneration.from_pretrained(
model_ckpt,
config=config).to('cuda:0',dtype=torch.bfloat16)
elif 'instructblip' in model_type:
model = InstructBlipForConditionalGeneration.from_pretrained(
model_ckpt,
config=config).to('cuda:0',dtype=torch.bfloat16)
sp = ["图"]+[f"<image{i}>" for i in range(20)]
processor = InstructBlipProcessor.from_pretrained(
model_ckpt
)
# processor = Blip2Processor.from_pretrained(
# model_ckpt
# )
sp = sp+processor.tokenizer.additional_special_tokens[len(sp):]
processor.tokenizer.add_special_tokens({'additional_special_tokens':sp})
prompt = ['Use the image 0: <image0>图,image 1: <image1>图 and image 2: <image2>图 as a visual aid to help you calculate the equation accurately. image 0 is 2+1=3.\nimage 1 is 5+6=11.\nimage 2 is"']
prompt = " ".join(prompt)
inputs = processor(images=images, text=prompt, return_tensors="pt")
inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
inputs['img_mask'] = torch.tensor([[1 for i in range(len(images))]])
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0)
inputs = inputs.to('cuda:0')
outputs = model.generate(
pixel_values = inputs['pixel_values'],
input_ids = inputs['input_ids'],
attention_mask = inputs['attention_mask'],
img_mask = inputs['img_mask']
)
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
print(generated_text)
Training Hyperparameters
- Training regime: [fp32, bf16 mixed precision, bf16 non-mixed precision]