File size: 14,635 Bytes
5c25e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78bbff5cbd00>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x78bbff5d0d80>"
    },
    "verbose": 1,
    "policy_kwargs": {
        ":type:": "<class 'dict'>",
        ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
        "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
        "optimizer_kwargs": {
            "alpha": 0.99,
            "eps": 1e-05,
            "weight_decay": 0
        }
    },
    "num_timesteps": 1000000,
    "_total_timesteps": 1000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1708705629240382925,
    "learning_rate": 0.0007,
    "tensorboard_log": null,
    "_last_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXD+ePlQx9D7740Y/lQxxv1YyCkBmHGDAbWOmvziFsz+j5Ya/IOPOv2eUsr8TcIRAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA80oGP1HBbT82kx4/H65lP7VNlj+kJJm/RXbCv/dbyD9Pr3S8+SHGv+3LH7/gJss/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABcP54+VDH0PvvjRj/D1oI/yCfRPyTWqT+VDHG/VjIKQGYcYMBzFd4+6ue6vtuCwT5tY6a/OIWzP6Plhr9pcou/BEh9P1uJZ74g486/Z5SyvxNwhEDKYrw/9M2mPktRoz+UaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 0.30907714  0.47693884  0.7769162 ]\n [-0.94159824  2.1593223  -3.5017333 ]\n [-1.2999092   1.402503   -1.053883  ]\n [-1.6163063  -1.3951539   4.138681  ]]",
        "desired_goal": "[[ 0.52458113  0.928731    0.61943376]\n [ 0.8971881   1.1742464  -1.1964307 ]\n [-1.5192343   1.5653065  -0.01493437]\n [-1.5479118  -0.6242054   1.5871239 ]]",
        "observation": "[[ 0.30907714  0.47693884  0.7769162   1.022179    1.6340265   1.3268476 ]\n [-0.94159824  2.1593223  -3.5017333   0.4337574  -0.3650506   0.37795147]\n [-1.2999092   1.402503   -1.053883   -1.089429    0.9893801  -0.2261099 ]\n [-1.6163063  -1.3951539   4.138681    1.4717648   0.32579005  1.2759184 ]]"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAADrOuwoVBL1wLzs9uZyRveIkKj3USYQ+Yg5avRY/ur0dTjs+i0JFPMBK/Txzblo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]",
        "desired_goal": "[[-0.00629354 -0.03224663  0.04569954]\n [-0.07109971  0.04153908  0.25837576]\n [-0.05323637 -0.09094064  0.18291517]\n [ 0.01203979  0.03091943  0.21331196]]",
        "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"
    },
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": 0.0,
    "_stats_window_size": 100,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7ScXm/336CMAWyUSwKMAXSUR0CkZBp/5LyudX2UKGgGR8AZOPtD2JzlaAdLMmgIR0CkZLH+Q2dedX2UKGgGR7/CIAwPAfuDaAdLAmgIR0CkZL6FEiMYdX2UKGgGR7/BlvqC6H0saAdLAmgIR0CkZMh+WnjydX2UKGgGR7/Lz8xbjcVQaAdLA2gIR0CkZNpT/ACXdX2UKGgGR7/BNOdoWYWtaAdLAmgIR0CkZONfoicHdX2UKGgGR8AXpASnLq2SaAdLMmgIR0CkZTxOclPadX2UKGgGR7/YjDsMRYigaAdLBGgIR0CkZU8vM8oydX2UKGgGR7/SX5nDiwSraAdLA2gIR0CkZWDrzGxVdX2UKGgGR7/QMw1zhgmaaAdLA2gIR0CkZXQZOzppdX2UKGgGR7+zmq5sj3VTaAdLAmgIR0CkZX8oYvWZdX2UKGgGR7/Lb212JSBLaAdLA2gIR0CkZZIH1OCYdX2UKGgGR8AftEWqLjxTaAdLMmgIR0CkZK8HWz4UdX2UKGgGR7/G0Ltu1ndwaAdLAmgIR0CkZZ4oy9EkdX2UKGgGR7/EiRnvlU6xaAdLA2gIR0CkZMGjbi6ydX2UKGgGR7+56/qPfbblaAdLAmgIR0CkZarJCBwudX2UKGgGR7+0PtlZowmFaAdLAmgIR0CkZNHKfWc0dX2UKGgGR7/QevZAY51eaAdLA2gIR0CkZb+IuXeFdX2UKGgGR7/LmlImPYFraAdLA2gIR0CkZOFzltCRdX2UKGgGR7/PtxdY4hllaAdLA2gIR0CkZdI1LrX2dX2UKGgGR8AM7Z13dKukaAdLMmgIR0CkZTpF1B+ndX2UKGgGR7+0RWcSXdCWaAdLAmgIR0CkZd3n6l+FdX2UKGgGR7/RsjVx0dR0aAdLA2gIR0CkZfBun/DMdX2UKGgGR7/C5S3solUqaAdLAmgIR0CkZfruhK15dX2UKGgGR7/ivt2LYPGyaAdLB2gIR0CkZWJfpljFdX2UKGgGR7/nMJQcghbGaAdLCWgIR0CkZRf7iyY5dX2UKGgGR7/CfHPu5SWJaAdLAmgIR0CkZW1jqfOEdX2UKGgGR7/QveP7vXsgaAdLA2gIR0CkZg3mV7hOdX2UKGgGR7/KZ3LV4HHFaAdLA2gIR0CkZSs8YAKfdX2UKGgGR7+fMSsbNr0raAdLAWgIR0CkZhPrv9cbdX2UKGgGR7/FaB7NSqEOaAdLAmgIR0CkZXvJA+pwdX2UKGgGR7/AA3kxREWqaAdLAmgIR0CkZh7u+h4/dX2UKGgGR7/MFyq+8Gs4aAdLA2gIR0CkZTtjkMkQdX2UKGgGR7/JdIGyHEdeaAdLA2gIR0CkZYtIsiB5dX2UKGgGR7/AmpEQXhwVaAdLAmgIR0CkZiufVZs9dX2UKGgGR7/Hj/dZaFEiaAdLA2gIR0CkZU1ea8YidX2UKGgGR7/C4dZJTVDsaAdLAmgIR0CkZjXp4bCKdX2UKGgGR7/JF85S3solaAdLA2gIR0CkZZ3EZR8/dX2UKGgGR7+XPzFuNxVAaAdLAWgIR0CkZjt5D7ZWdX2UKGgGR7+0fHPu5SWJaAdLAmgIR0CkZkkLYwqRdX2UKGgGR7/JdVvMr3CbaAdLA2gIR0CkZbCzsyBTdX2UKGgGR7/Xfms/6frbaAdLBGgIR0CkZWY9ovi+dX2UKGgGR7+kAzYVZcLSaAdLAWgIR0CkZWsYEW69dX2UKGgGR7/APEKmbb1zaAdLAmgIR0CkZlO3UhFFdX2UKGgGR7+kNtqHoHLSaAdLAWgIR0CkZlj4QBgedX2UKGgGR8ARQaJhvze5aAdLMmgIR0CkZg0Sh8IBdX2UKGgGR7/QzPrv9cbBaAdLA2gIR0CkZcDA8B+4dX2UKGgGR7+7vG6wt8NQaAdLAmgIR0CkZXY/mknDdX2UKGgGR7+m7+T/yXlbaAdLAWgIR0CkZcXqJMxodX2UKGgGR7/U3+dbxEv1aAdLA2gIR0CkZmo8ZDRddX2UKGgGR7/G88s+V1OkaAdLA2gIR0CkZh3cHnlodX2UKGgGR7/bsZ5zHS4OaAdLBGgIR0CkZYsdcSoPdX2UKGgGR7+6dNFjNIK/aAdLAmgIR0CkZibkfcN6dX2UKGgGR7/T3yZrpJPJaAdLA2gIR0CkZngBDG96dX2UKGgGR7/ia8Hv+fh/aAdLBWgIR0CkZd95Y5ktdX2UKGgGR7/DOpKjBVMmaAdLAmgIR0CkZZTe40/GdX2UKGgGR7+0tqYZ2pyZaAdLAmgIR0CkZoRRVIZqdX2UKGgGR7/Ou5BkZrHmaAdLA2gIR0CkZjet0V8DdX2UKGgGR7/C9s7+1jRVaAdLA2gIR0CkZe+Y2Kl6dX2UKGgGR7/KmBOHnEEUaAdLA2gIR0CkZaTeO4oadX2UKGgGR7+jnJT2nKnvaAdLAWgIR0CkZakbxVhkdX2UKGgGR7/LBgNPP9k0aAdLA2gIR0CkZpHdGiHqdX2UKGgGR7+9LcsUZeiSaAdLAmgIR0CkZfjcM3IddX2UKGgGR7/eHrQgLZzxaAdLBGgIR0CkZkxc3VCpdX2UKGgGR7+9T5wfhddFaAdLAmgIR0CkZp1l5GBndX2UKGgGR7/SylenhsInaAdLA2gIR0CkZgjSofjkdX2UKGgGR7+159mYjSogaAdLAmgIR0CkZqb0Fr2ydX2UKGgGR7/RkH2RJVbSaAdLA2gIR0CkZlpWNm16dX2UKGgGR7+hc/t6X0GvaAdLAWgIR0CkZqu9WZJDdX2UKGgGR7/Bga3qiXY2aAdLAmgIR0CkZhKrJbMYdX2UKGgGR7+gTj/+85CGaAdLAWgIR0CkZhmxt52RdX2UKGgGR7+k5ZKWcBluaAdLAWgIR0CkZh6DwpfAdX2UKGgGR7/GLWqcVgx8aAdLA2gIR0CkZrx59mYjdX2UKGgGR7+0ywfQrtmdaAdLAmgIR0CkZsfPw/gSdX2UKGgGR7/UA1vVEuxsaAdLA2gIR0CkZi+Eh7mddX2UKGgGR7+j3j+717IDaAdLAWgIR0CkZtAavRqodX2UKGgGR7+2/FirksBiaAdLAmgIR0CkZjyFXaJzdX2UKGgGR7/KjrRjSXt0aAdLA2gIR0CkZuCJ40MxdX2UKGgGR7+8zoEB8x9HaAdLAmgIR0CkZkgEEC/5dX2UKGgGR7/UNSqEOAiFaAdLA2gIR0CkZvNz0Yj0dX2UKGgGR7/aFQl8gIQfaAdLBGgIR0CkZmD0lJHzdX2UKGgGR7/XdpZfUnXvaAdLBGgIR0CkZwwFs54odX2UKGgGR7/Xr1/Ue+23aAdLA2gIR0CkZnP8IiTudX2UKGgGR7+gFcIJJGvwaAdLAWgIR0CkZxHh0hePdX2UKGgGR7+3E74i5d4WaAdLAmgIR0CkZn9DIBBBdX2UKGgGR7/WWcz67/XHaAdLA2gIR0CkZyKjSG8FdX2UKGgGR7/bJokAxSHeaAdLBGgIR0CkZph/7SApdX2UKGgGR7/OxXXAdn01aAdLA2gIR0CkZzb0OEuhdX2UKGgGR7/JylvZRKpUaAdLA2gIR0CkZ0ld1MdtdX2UKGgGR7/XPMSsbNr1aAdLBGgIR0CkZrFdC3PSdX2UKGgGR7+7nvDxb0OFaAdLAmgIR0CkZ1RODaoNdX2UKGgGR7/KxcmjTKDDaAdLA2gIR0CkZsGCiAUddX2UKGgGR7+151Ng0CRwaAdLAmgIR0CkZs3LNfPYdX2UKGgGR7/aw5/9YOlPaAdLBGgIR0CkZ2vHcUM5dX2UKGgGR7+RMrVe8f3faAdLAWgIR0CkZtN/FzdUdX2UKGgGR7+73ueBg/keaAdLAmgIR0CkZ3cVHnU2dX2UKGgGR7/Lisny/bj+aAdLA2gIR0CkZuQAuIykdX2UKGgGR7/Wo24uscQzaAdLBGgIR0CkZ46vA44qdX2UKGgGR7/VRLsa86FNaAdLA2gIR0CkZvZ5Z8rqdX2UKGgGR7+jaPCEYfnwaAdLAWgIR0CkZ5Syt3fRdWUu"
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 50000,
    "n_steps": 5,
    "gamma": 0.99,
    "gae_lambda": 1.0,
    "ent_coef": 0.0,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "normalize_advantage": false,
    "observation_space": {
        ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
        ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
        "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
        "_shape": null,
        "dtype": null,
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gymnasium.spaces.box.Box'>",
        ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
        "dtype": "float32",
        "bounded_below": "[ True  True  True]",
        "bounded_above": "[ True  True  True]",
        "_shape": [
            3
        ],
        "low": "[-1. -1. -1.]",
        "high": "[1. 1. 1.]",
        "low_repr": "-1.0",
        "high_repr": "1.0",
        "_np_random": null
    },
    "n_envs": 4,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVqAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    }
}