|
--- |
|
language: |
|
- nl |
|
license: mit |
|
tags: |
|
- trl |
|
- fietje |
|
- alignment-handbook |
|
base_model: microsoft/phi-2 |
|
datasets: |
|
- uonlp/CulturaX |
|
- wikimedia/wikipedia |
|
- BramVanroy/wikipedia_culturax_dutch |
|
pipeline_tag: text-generation |
|
inference: false |
|
model-index: |
|
- name: fietje-2 |
|
results: [] |
|
--- |
|
|
|
|
|
<p align="center" style="margin:0;padding:0"> |
|
<img src="https://huggingface.co/BramVanroy/fietje-2/resolve/main/img/fietje-2b-banner-rounded.png" alt="Fietje banner" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> |
|
</p> |
|
|
|
<div style="margin:auto; margin-top: 0; text-align:center"> |
|
<h1 style="margin-bottom: 0">Fietje 2</h1> |
|
<em>An open and efficient LLM for Dutch</em> |
|
</div> |
|
|
|
<blockquote class="tip" style="padding: 1.5em; border: 0"> |
|
<p align="center" style="text-align: center; margin: 0"> |
|
<a rel="nofollow" href="https://huggingface.co/BramVanroy/fietje-2">π±ββοΈ Base version</a> (this one) - |
|
<a rel="nofollow" href="https://huggingface.co/BramVanroy/fietje-2-instruct">π€ Instruct version</a> - |
|
<a rel="nofollow" href="https://huggingface.co/BramVanroy/fietje-2-chat">π¬ Chat version</a> - |
|
<a rel="nofollow" href="https://huggingface.co/BramVanroy/fietje-2-GGUF">π GGUF of base</a> |
|
</p> |
|
<p align="center" style="text-align: center; margin: 0"> |
|
<a href="https://huggingface.co/spaces/BramVanroy/fietje-2b"><strong>Chat with Fietje here!</strong></a> |
|
</p> |
|
</blockquote> |
|
|
|
Fietje is an adapated version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2), tailored to Dutch text generation by training on 28B tokens. It is small and efficient with a size of 2.7 billion parameters while performing almost on par with more powerful Dutch LLMs of twice its size like [GEITje 7B Ultra](https://huggingface.co/BramVanroy/GEITje-7B-ultra). |
|
|
|
A thorough description of the creation and evaluation of Fietje as well as usage examples are available in [this Github repository](https://github.com/BramVanroy/fietje). |
|
|
|
## Citation |
|
|
|
If you use Fietje or the [CulturaX + Wikipedia filtered subset](https://huggingface.co/datasets/BramVanroy/wikipedia_culturax_dutch) in your work, please cite to the following paper: |
|
|
|
```bibtex |
|
@misc{vanroy2024fietjeopenefficientllm, |
|
title={Fietje: An open, efficient LLM for Dutch}, |
|
author={Bram Vanroy}, |
|
year={2024}, |
|
eprint={2412.15450}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2412.15450}, |
|
} |
|
``` |
|
|
|
## Intended uses & limitations |
|
|
|
The same limitations as [phi-2](https://huggingface.co/microsoft/phi-2#limitations-of-phi-2), and LLMs in general, apply here. LLMs hallucinate, make mistakes, and should not be trusted. Use at your own risk! |
|
|
|
## Training data |
|
|
|
Fietje was continue-pretrained on 28B Dutch tokens, which includes the full Dutch component of Wikipedia (accounting for around 15%), supplemented with Dutch tokens from CulturaX. A newer version of this dataset can be found [here](https://huggingface.co/datasets/BramVanroy/wikipedia_culturax_dutch), which also describes the filtering that took place to ensure high data quality. |
|
|
|
## Training procedure |
|
|
|
I am thankful to the [Flemish Supercomputer Center](https://www.vscentrum.be/) (VSC) for providing the computational power to accomplish this project. Accounting for waiting for jobs, training took around two weeks on four nodes of 4x A100 80GB each (16 total). |
|
|
|
Training was done with the wonderful [alignment-handbook](https://github.com/huggingface/alignment-handbook), using DeepSpeed as a back-end. Exact training recipes and SLURM script are given in the [Github repository](https://github.com/BramVanroy/fietje). |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 9e-05 |
|
- train_batch_size: 40 |
|
- eval_batch_size: 40 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 16 |
|
- gradient_accumulation_steps: 3 |
|
- total_train_batch_size: 1920 |
|
- total_eval_batch_size: 640 |
|
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-07 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.6334 | 0.13 | 900 | 1.5937 | |
|
| 1.5469 | 0.26 | 1800 | 1.5051 | |
|
| 1.4937 | 0.4 | 2700 | 1.4628 | |
|
| 1.4633 | 0.53 | 3600 | 1.4375 | |
|
| 1.4485 | 0.66 | 4500 | 1.4203 | |
|
| 1.4374 | 0.79 | 5400 | 1.4085 | |
|
| 1.4278 | 0.92 | 6300 | 1.4013 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.1 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|