File size: 2,133 Bytes
3c5983e ec9aef6 3c5983e ae775ba ec9aef6 3c5983e ec9aef6 3c5983e ae775ba 3c5983e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: fine_tuned_deberta
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fine_tuned_deberta
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2283
- Accuracy: 0.9331
- F1: 0.9272
- Precision: 1.0
- Recall: 0.8643
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.7017 | 0.96 | 17 | 0.6835 | 0.5352 | 0.1081 | 1.0 | 0.0571 |
| 0.6085 | 1.97 | 35 | 0.5872 | 0.6866 | 0.5822 | 0.8493 | 0.4429 |
| 0.518 | 2.99 | 53 | 0.4436 | 0.7958 | 0.8141 | 0.7384 | 0.9071 |
| 0.2366 | 4.0 | 71 | 0.2283 | 0.9331 | 0.9272 | 1.0 | 0.8643 |
| 0.1579 | 4.96 | 88 | 0.2696 | 0.9331 | 0.9294 | 0.9690 | 0.8929 |
| 0.1626 | 5.97 | 106 | 0.2726 | 0.9225 | 0.9179 | 0.9609 | 0.8786 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|