Edit model card

spellcorrector_11_02_050_1_per_word_v3

This model is a fine-tuned version of google/canine-s on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1122
  • Precision: 0.9508
  • Recall: 0.9393
  • F1: 0.9450
  • Accuracy: 0.9712

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3822 1.0 967 0.1659 0.9540 0.9231 0.9383 0.9596
0.1657 2.0 1934 0.1387 0.9545 0.9352 0.9448 0.9650
0.144 3.0 2901 0.1302 0.9506 0.9352 0.9429 0.9671
0.1297 4.0 3868 0.1234 0.9506 0.9352 0.9429 0.9684
0.122 5.0 4835 0.1205 0.9508 0.9393 0.9450 0.9692
0.1161 6.0 5802 0.1170 0.9585 0.9352 0.9467 0.9699
0.11 7.0 6769 0.1140 0.9506 0.9352 0.9429 0.9705
0.105 8.0 7736 0.1144 0.9472 0.9433 0.9452 0.9705
0.1007 9.0 8703 0.1121 0.9469 0.9393 0.9431 0.9711
0.0981 10.0 9670 0.1122 0.9508 0.9393 0.9450 0.9712

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.1
Downloads last month
5
Safetensors
Model size
132M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Buseak/spellcorrector_11_02_050_1_per_word_v3

Base model

google/canine-s
Finetuned
(8)
this model