Edit model card

spellcorrector_17_02_050_qwerty

This model is a fine-tuned version of google/canine-s on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0163
  • Precision: 0.9930
  • Recall: 0.9887
  • F1: 0.9909
  • Accuracy: 0.9952

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4639 1.0 967 0.1649 0.9619 0.9624 0.9622 0.9608
0.1737 2.0 1934 0.1300 0.9620 0.9656 0.9638 0.9664
0.145 3.0 2901 0.1099 0.9678 0.9694 0.9686 0.9708
0.1222 4.0 3868 0.0906 0.9699 0.9699 0.9699 0.9752
0.105 5.0 4835 0.0736 0.9726 0.9699 0.9712 0.9792
0.0933 6.0 5802 0.0633 0.9758 0.9732 0.9745 0.9817
0.0807 7.0 6769 0.0531 0.9822 0.9780 0.9801 0.9844
0.0715 8.0 7736 0.0468 0.9839 0.9828 0.9834 0.9864
0.0643 9.0 8703 0.0404 0.9833 0.9823 0.9828 0.9880
0.0575 10.0 9670 0.0356 0.9903 0.9866 0.9884 0.9894
0.0525 11.0 10637 0.0317 0.9887 0.9866 0.9876 0.9905
0.0481 12.0 11604 0.0281 0.9908 0.9871 0.9890 0.9915
0.0444 13.0 12571 0.0255 0.9919 0.9871 0.9895 0.9923
0.0417 14.0 13538 0.0235 0.9924 0.9877 0.9900 0.9930
0.0382 15.0 14505 0.0211 0.9925 0.9882 0.9903 0.9937
0.0358 16.0 15472 0.0198 0.9930 0.9887 0.9909 0.9941
0.034 17.0 16439 0.0184 0.9930 0.9882 0.9906 0.9946
0.0323 18.0 17406 0.0173 0.9930 0.9882 0.9906 0.9949
0.0306 19.0 18373 0.0167 0.9930 0.9887 0.9909 0.9951
0.0304 20.0 19340 0.0163 0.9930 0.9887 0.9909 0.9952

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
11
Safetensors
Model size
132M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Buseak/spellcorrector_17_02_050_qwerty

Base model

google/canine-s
Finetuned
(8)
this model
Finetunes
2 models