|
--- |
|
language: |
|
- ar |
|
license: apache-2.0 |
|
widget: |
|
- text: 'إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع' |
|
--- |
|
# CAMeLBERT-MSA POS-MSA Model |
|
## Model description |
|
**CAMeLBERT-MSA POS-MSA Model** is a Modern Standard Arabic (MSA) POS tagging model that was built by fine-tuning the [CAMeLBERT-MSA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa/) model. |
|
For the fine-tuning, we used the [PATB](https://dl.acm.org/doi/pdf/10.5555/1621804.1621808) dataset . |
|
Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). |
|
|
|
## Intended uses |
|
You can use the CAMeLBERT-MSA POS-MSA model as part of the transformers pipeline. |
|
This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. |
|
|
|
#### How to use |
|
To use the model with a transformers pipeline: |
|
```python |
|
>>> from transformers import pipeline |
|
>>> pos = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-msa') |
|
>>> text = 'إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع' |
|
>>> pos(text) |
|
[{'entity': 'noun', 'score': 0.9999764, 'index': 1, 'word': 'إمارة', 'start': 0, 'end': 5}, {'entity': 'noun_prop', 'score': 0.99991846, 'index': 2, 'word': 'أبوظبي', 'start': 6, 'end': 12}, {'entity': 'pron', 'score': 0.9998356, 'index': 3, 'word': 'هي', 'start': 13, 'end': 15}, {'entity': 'noun', 'score': 0.99368894, 'index': 4, 'word': 'إحدى', 'start': 16, 'end': 20}, {'entity': 'noun', 'score': 0.9999426, 'index': 5, 'word': 'إما', 'start': 21, 'end': 24}, {'entity': 'noun', 'score': 0.9999339, 'index': 6, 'word': '##رات', 'start': 24, 'end': 27}, {'entity': 'noun', 'score': 0.99996775, 'index': 7, 'word': 'دولة', 'start': 28, 'end': 32}, {'entity': 'noun', 'score': 0.99996895, 'index': 8, 'word': 'الإمارات', 'start': 33, 'end': 41}, {'entity': 'adj', 'score': 0.99990183, 'index': 9, 'word': 'العربية', 'start': 42, 'end': 49}, {'entity': 'adj', 'score': 0.9999347, 'index': 10, 'word': 'المتحدة', 'start': 50, 'end': 57}, {'entity': 'noun_num', 'score': 0.99931145, 'index': 11, 'word': 'السبع', 'start': 58, 'end': 63}] |
|
``` |
|
*Note*: to download our models, you would need `transformers>=3.5.0`. |
|
Otherwise, you could download the models manually. |
|
|
|
## Citation |
|
```bibtex |
|
@inproceedings{inoue-etal-2021-interplay, |
|
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", |
|
author = "Inoue, Go and |
|
Alhafni, Bashar and |
|
Baimukan, Nurpeiis and |
|
Bouamor, Houda and |
|
Habash, Nizar", |
|
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", |
|
month = apr, |
|
year = "2021", |
|
address = "Kyiv, Ukraine (Online)", |
|
publisher = "Association for Computational Linguistics", |
|
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", |
|
} |
|
``` |