34b-beta / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
a53a094 verified
|
raw
history blame
4.94 kB
metadata
license: gpl-3.0
model-index:
  - name: 34b-beta
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 30.43
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CausalLM/34b-beta
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 36.68
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CausalLM/34b-beta
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 4.15
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CausalLM/34b-beta
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 12.86
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CausalLM/34b-beta
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 6.92
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CausalLM/34b-beta
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 48.06
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CausalLM/34b-beta
          name: Open LLM Leaderboard

CausalLM 34B β

Demo:

PROMPT FORMAT:

chatml

There are some issues with the model weights in terms of precision. In the next version update, we will roll back some progress and retrain to fix these issues as soon as possible.

Please note: Do not use "accelerated inference frameworks" like VLLM temporarily. Instead, use Transformers for inference. Otherwise, due to precision issues, the output quality will be significantly degraded. If you need faster inference, you can consider using the q8_0 quantization (faster and better than bf16 vllm for this model only) with llama.cpp temporarily or wait for the official version. To be fixed in the upcoming next version update.

no repetition_penalty!

Please do not use wikitext for quantization calibration because all wikitext have been re-aligned on synthetic dataset, and its distribution differs significantly from the original wikitext.

MT-Bench: 8.5

mt-bench

Some contamination detection if you want to check:

Models MMLU (ref: llama7b) TBA
microsoft/Orca-2-7b 0.77
mistralai/Mistral-7B-v0.1 0.46
CausalLM/34b-beta 0.38
01-ai/Yi-6B-200K 0.3

data from https://huggingface.co/spaces/Yeyito/llm_contamination_detector

It should be safe. It was not trained on the benchmark, but the contamination of the training dataset is unavoidable due to cost constraints.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 23.18
IFEval (0-Shot) 30.43
BBH (3-Shot) 36.68
MATH Lvl 5 (4-Shot) 4.15
GPQA (0-shot) 12.86
MuSR (0-shot) 6.92
MMLU-PRO (5-shot) 48.06