File size: 14,709 Bytes
4122b4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import os
import warnings
from typing import List, Union, Optional, NamedTuple
import ctranslate2
import faster_whisper
import numpy as np
import torch
from transformers import Pipeline
from transformers.pipelines.pt_utils import PipelineIterator
from .audio import N_SAMPLES, SAMPLE_RATE, load_audio, log_mel_spectrogram
from .vad import load_vad_model, merge_chunks
from .types import TranscriptionResult, SingleSegment
def find_numeral_symbol_tokens(tokenizer):
numeral_symbol_tokens = []
for i in range(tokenizer.eot):
token = tokenizer.decode([i]).removeprefix(" ")
has_numeral_symbol = any(c in "0123456789%$£" for c in token)
if has_numeral_symbol:
numeral_symbol_tokens.append(i)
return numeral_symbol_tokens
class WhisperModel(faster_whisper.WhisperModel):
'''
FasterWhisperModel provides batched inference for faster-whisper.
Currently only works in non-timestamp mode and fixed prompt for all samples in batch.
'''
def generate_segment_batched(self, features: np.ndarray, tokenizer: faster_whisper.tokenizer.Tokenizer, options: faster_whisper.transcribe.TranscriptionOptions, encoder_output = None):
batch_size = features.shape[0]
all_tokens = []
prompt_reset_since = 0
if options.initial_prompt is not None:
initial_prompt = " " + options.initial_prompt.strip()
initial_prompt_tokens = tokenizer.encode(initial_prompt)
all_tokens.extend(initial_prompt_tokens)
previous_tokens = all_tokens[prompt_reset_since:]
prompt = self.get_prompt(
tokenizer,
previous_tokens,
without_timestamps=options.without_timestamps,
prefix=options.prefix,
)
encoder_output = self.encode(features)
max_initial_timestamp_index = int(
round(options.max_initial_timestamp / self.time_precision)
)
result = self.model.generate(
encoder_output,
[prompt] * batch_size,
beam_size=options.beam_size,
patience=options.patience,
length_penalty=options.length_penalty,
max_length=self.max_length,
suppress_blank=options.suppress_blank,
suppress_tokens=options.suppress_tokens,
)
tokens_batch = [x.sequences_ids[0] for x in result]
def decode_batch(tokens: List[List[int]]) -> str:
res = []
for tk in tokens:
res.append([token for token in tk if token < tokenizer.eot])
# text_tokens = [token for token in tokens if token < self.eot]
return tokenizer.tokenizer.decode_batch(res)
text = decode_batch(tokens_batch)
return text
def encode(self, features: np.ndarray) -> ctranslate2.StorageView:
# When the model is running on multiple GPUs, the encoder output should be moved
# to the CPU since we don't know which GPU will handle the next job.
to_cpu = self.model.device == "cuda" and len(self.model.device_index) > 1
# unsqueeze if batch size = 1
if len(features.shape) == 2:
features = np.expand_dims(features, 0)
features = faster_whisper.transcribe.get_ctranslate2_storage(features)
return self.model.encode(features, to_cpu=to_cpu)
class FasterWhisperPipeline(Pipeline):
"""
Huggingface Pipeline wrapper for FasterWhisperModel.
"""
# TODO:
# - add support for timestamp mode
# - add support for custom inference kwargs
def __init__(
self,
model,
vad,
vad_params: dict,
options : NamedTuple,
tokenizer=None,
device: Union[int, str, "torch.device"] = -1,
framework = "pt",
language : Optional[str] = None,
suppress_numerals: bool = False,
**kwargs
):
self.model = model
self.tokenizer = tokenizer
self.options = options
self.preset_language = language
self.suppress_numerals = suppress_numerals
self._batch_size = kwargs.pop("batch_size", None)
self._num_workers = 1
self._preprocess_params, self._forward_params, self._postprocess_params = self._sanitize_parameters(**kwargs)
self.call_count = 0
self.framework = framework
if self.framework == "pt":
if isinstance(device, torch.device):
self.device = device
elif isinstance(device, str):
self.device = torch.device(device)
elif device < 0:
self.device = torch.device("cpu")
else:
self.device = torch.device(f"cuda:{device}")
else:
self.device = device
super(Pipeline, self).__init__()
self.vad_model = vad
self._vad_params = vad_params
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "tokenizer" in kwargs:
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
return preprocess_kwargs, {}, {}
def preprocess(self, audio):
audio = audio['inputs']
model_n_mels = self.model.feat_kwargs.get("feature_size")
features = log_mel_spectrogram(
audio,
n_mels=model_n_mels if model_n_mels is not None else 80,
padding=N_SAMPLES - audio.shape[0],
)
return {'inputs': features}
def _forward(self, model_inputs):
outputs = self.model.generate_segment_batched(model_inputs['inputs'], self.tokenizer, self.options)
return {'text': outputs}
def postprocess(self, model_outputs):
return model_outputs
def get_iterator(
self, inputs, num_workers: int, batch_size: int, preprocess_params, forward_params, postprocess_params
):
dataset = PipelineIterator(inputs, self.preprocess, preprocess_params)
if "TOKENIZERS_PARALLELISM" not in os.environ:
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# TODO hack by collating feature_extractor and image_processor
def stack(items):
return {'inputs': torch.stack([x['inputs'] for x in items])}
dataloader = torch.utils.data.DataLoader(dataset, num_workers=num_workers, batch_size=batch_size, collate_fn=stack)
model_iterator = PipelineIterator(dataloader, self.forward, forward_params, loader_batch_size=batch_size)
final_iterator = PipelineIterator(model_iterator, self.postprocess, postprocess_params)
return final_iterator
def transcribe(
self, audio: Union[str, np.ndarray], batch_size=None, num_workers=0, language=None, task=None, chunk_size=30, print_progress = False, combined_progress=False
) -> TranscriptionResult:
if isinstance(audio, str):
audio = load_audio(audio)
def data(audio, segments):
for seg in segments:
f1 = int(seg['start'] * SAMPLE_RATE)
f2 = int(seg['end'] * SAMPLE_RATE)
# print(f2-f1)
yield {'inputs': audio[f1:f2]}
vad_segments = self.vad_model({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": SAMPLE_RATE})
vad_segments = merge_chunks(
vad_segments,
chunk_size,
onset=self._vad_params["vad_onset"],
offset=self._vad_params["vad_offset"],
)
if self.tokenizer is None:
language = language or self.detect_language(audio)
task = task or "transcribe"
self.tokenizer = faster_whisper.tokenizer.Tokenizer(self.model.hf_tokenizer,
self.model.model.is_multilingual, task=task,
language=language)
else:
language = language or self.tokenizer.language_code
task = task or self.tokenizer.task
if task != self.tokenizer.task or language != self.tokenizer.language_code:
self.tokenizer = faster_whisper.tokenizer.Tokenizer(self.model.hf_tokenizer,
self.model.model.is_multilingual, task=task,
language=language)
if self.suppress_numerals:
previous_suppress_tokens = self.options.suppress_tokens
numeral_symbol_tokens = find_numeral_symbol_tokens(self.tokenizer)
print(f"Suppressing numeral and symbol tokens")
new_suppressed_tokens = numeral_symbol_tokens + self.options.suppress_tokens
new_suppressed_tokens = list(set(new_suppressed_tokens))
self.options = self.options._replace(suppress_tokens=new_suppressed_tokens)
segments: List[SingleSegment] = []
batch_size = batch_size or self._batch_size
total_segments = len(vad_segments)
for idx, out in enumerate(self.__call__(data(audio, vad_segments), batch_size=batch_size, num_workers=num_workers)):
if print_progress:
base_progress = ((idx + 1) / total_segments) * 100
percent_complete = base_progress / 2 if combined_progress else base_progress
print(f"Progress: {percent_complete:.2f}%...")
text = out['text']
if batch_size in [0, 1, None]:
text = text[0]
segments.append(
{
"text": text,
"start": round(vad_segments[idx]['start'], 3),
"end": round(vad_segments[idx]['end'], 3)
}
)
# revert the tokenizer if multilingual inference is enabled
if self.preset_language is None:
self.tokenizer = None
# revert suppressed tokens if suppress_numerals is enabled
if self.suppress_numerals:
self.options = self.options._replace(suppress_tokens=previous_suppress_tokens)
return {"segments": segments, "language": language}
def detect_language(self, audio: np.ndarray):
if audio.shape[0] < N_SAMPLES:
print("Warning: audio is shorter than 30s, language detection may be inaccurate.")
model_n_mels = self.model.feat_kwargs.get("feature_size")
segment = log_mel_spectrogram(audio[: N_SAMPLES],
n_mels=model_n_mels if model_n_mels is not None else 80,
padding=0 if audio.shape[0] >= N_SAMPLES else N_SAMPLES - audio.shape[0])
encoder_output = self.model.encode(segment)
results = self.model.model.detect_language(encoder_output)
language_token, language_probability = results[0][0]
language = language_token[2:-2]
print(f"Detected language: {language} ({language_probability:.2f}) in first 30s of audio...")
return language
def load_model(whisper_arch,
device,
device_index=0,
compute_type="float16",
asr_options=None,
language : Optional[str] = None,
vad_model=None,
vad_options=None,
model : Optional[WhisperModel] = None,
task="transcribe",
download_root=None,
threads=4):
'''Load a Whisper model for inference.
Args:
whisper_arch: str - The name of the Whisper model to load.
device: str - The device to load the model on.
compute_type: str - The compute type to use for the model.
options: dict - A dictionary of options to use for the model.
language: str - The language of the model. (use English for now)
model: Optional[WhisperModel] - The WhisperModel instance to use.
download_root: Optional[str] - The root directory to download the model to.
threads: int - The number of cpu threads to use per worker, e.g. will be multiplied by num workers.
Returns:
A Whisper pipeline.
'''
if whisper_arch.endswith(".en"):
language = "en"
model = model or WhisperModel(whisper_arch,
device=device,
device_index=device_index,
compute_type=compute_type,
download_root=download_root,
cpu_threads=threads)
if language is not None:
tokenizer = faster_whisper.tokenizer.Tokenizer(model.hf_tokenizer, model.model.is_multilingual, task=task, language=language)
else:
print("No language specified, language will be first be detected for each audio file (increases inference time).")
tokenizer = None
default_asr_options = {
"beam_size": 5,
"best_of": 5,
"patience": 1,
"length_penalty": 1,
"repetition_penalty": 1,
"no_repeat_ngram_size": 0,
"temperatures": [0.0, 0.2, 0.4, 0.6, 0.8, 1.0],
"compression_ratio_threshold": 2.4,
"log_prob_threshold": -1.0,
"no_speech_threshold": 0.6,
"condition_on_previous_text": False,
"prompt_reset_on_temperature": 0.5,
"initial_prompt": None,
"prefix": None,
"suppress_blank": True,
"suppress_tokens": [-1],
"without_timestamps": True,
"max_initial_timestamp": 0.0,
"word_timestamps": False,
"prepend_punctuations": "\"'“¿([{-",
"append_punctuations": "\"'.。,,!!??::”)]}、",
"suppress_numerals": False,
"max_new_tokens": None,
"clip_timestamps": None,
"hallucination_silence_threshold": None,
}
if asr_options is not None:
default_asr_options.update(asr_options)
suppress_numerals = default_asr_options["suppress_numerals"]
del default_asr_options["suppress_numerals"]
default_asr_options = faster_whisper.transcribe.TranscriptionOptions(**default_asr_options)
default_vad_options = {
"vad_onset": 0.500,
"vad_offset": 0.363
}
if vad_options is not None:
default_vad_options.update(vad_options)
if vad_model is not None:
vad_model = vad_model
else:
vad_model = load_vad_model(torch.device(device), use_auth_token=None, **default_vad_options)
return FasterWhisperPipeline(
model=model,
vad=vad_model,
options=default_asr_options,
tokenizer=tokenizer,
language=language,
suppress_numerals=suppress_numerals,
vad_params=default_vad_options,
)
|