OpenELM-1_1B-DPO-full-max-10-reward
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.5022
- Rewards/chosen: -12.0
- Rewards/rejected: -14.25
- Rewards/accuracies: 0.5996
- Rewards/margins: 2.2188
- Logps/rejected: -1712.0
- Logps/chosen: -1520.0
- Logits/rejected: -1.7422
- Logits/chosen: -3.6875
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.3683 | 0.1047 | 100 | 0.6799 | -1.8125 | -2.1719 | 0.6016 | 0.3555 | -506.0 | -500.0 | -12.125 | -12.4375 |
0.2926 | 0.2094 | 200 | 0.7127 | -2.0312 | -2.5156 | 0.6152 | 0.4863 | -540.0 | -520.0 | -10.0 | -10.5625 |
0.2695 | 0.3141 | 300 | 0.7960 | -4.5938 | -5.1562 | 0.5801 | 0.5781 | -804.0 | -776.0 | -7.2812 | -8.1875 |
0.245 | 0.4188 | 400 | 0.7903 | -4.6562 | -5.25 | 0.5801 | 0.5977 | -812.0 | -784.0 | -8.75 | -9.5625 |
0.2375 | 0.5236 | 500 | 0.9612 | -6.75 | -7.875 | 0.6113 | 1.125 | -1080.0 | -992.0 | -7.4688 | -8.6875 |
0.2534 | 0.6283 | 600 | 0.8573 | -5.6562 | -6.5 | 0.6133 | 0.8438 | -940.0 | -884.0 | -8.75 | -9.6875 |
0.2213 | 0.7330 | 700 | 0.8133 | -4.7812 | -5.7188 | 0.6387 | 0.9336 | -860.0 | -796.0 | -5.75 | -7.3125 |
0.2342 | 0.8377 | 800 | 0.8574 | -5.5625 | -6.4688 | 0.6055 | 0.9336 | -936.0 | -872.0 | -7.2812 | -8.5625 |
0.199 | 0.9424 | 900 | 0.8853 | -7.1875 | -8.1875 | 0.6074 | 0.9570 | -1104.0 | -1040.0 | -4.6562 | -6.0938 |
0.0529 | 1.0471 | 1000 | 1.1147 | -8.5 | -9.75 | 0.6055 | 1.2734 | -1264.0 | -1168.0 | -4.4062 | -6.2188 |
0.058 | 1.1518 | 1100 | 1.0443 | -6.25 | -7.25 | 0.5977 | 1.0 | -1012.0 | -940.0 | -7.9375 | -9.1875 |
0.0436 | 1.2565 | 1200 | 1.1756 | -9.5625 | -10.875 | 0.6133 | 1.3438 | -1376.0 | -1272.0 | -1.3125 | -3.0938 |
0.0353 | 1.3613 | 1300 | 1.2987 | -8.75 | -10.4375 | 0.5859 | 1.6875 | -1328.0 | -1192.0 | -5.2812 | -7.0625 |
0.0576 | 1.4660 | 1400 | 1.0486 | -8.0625 | -9.5625 | 0.6172 | 1.4609 | -1240.0 | -1128.0 | -4.625 | -6.4688 |
0.0444 | 1.5707 | 1500 | 1.1459 | -8.875 | -10.5 | 0.6113 | 1.6484 | -1344.0 | -1208.0 | -1.9141 | -3.9219 |
0.0475 | 1.6754 | 1600 | 1.1818 | -8.5625 | -10.125 | 0.5918 | 1.5547 | -1304.0 | -1176.0 | -2.5938 | -4.5625 |
0.0644 | 1.7801 | 1700 | 1.2222 | -9.625 | -11.25 | 0.6055 | 1.6562 | -1416.0 | -1280.0 | -2.7344 | -4.5938 |
0.0397 | 1.8848 | 1800 | 1.0832 | -7.8125 | -9.375 | 0.6172 | 1.5469 | -1224.0 | -1096.0 | -3.3438 | -5.375 |
0.0254 | 1.9895 | 1900 | 1.1882 | -9.8125 | -11.4375 | 0.6191 | 1.6719 | -1432.0 | -1296.0 | -3.7344 | -5.4688 |
0.0037 | 2.0942 | 2000 | 1.3353 | -11.125 | -13.125 | 0.6133 | 1.9766 | -1600.0 | -1432.0 | -2.5938 | -4.5312 |
0.0048 | 2.1990 | 2100 | 1.5185 | -12.1875 | -14.375 | 0.5996 | 2.2031 | -1728.0 | -1536.0 | -2.7656 | -4.7188 |
0.0045 | 2.3037 | 2200 | 1.5012 | -12.4375 | -14.625 | 0.6133 | 2.1875 | -1752.0 | -1560.0 | -1.75 | -3.6406 |
0.0108 | 2.4084 | 2300 | 1.5281 | -12.3125 | -14.5625 | 0.6074 | 2.2344 | -1744.0 | -1552.0 | -1.8047 | -3.75 |
0.0056 | 2.5131 | 2400 | 1.5154 | -12.125 | -14.3125 | 0.6074 | 2.2188 | -1720.0 | -1528.0 | -1.6797 | -3.625 |
0.0051 | 2.6178 | 2500 | 1.5115 | -12.1875 | -14.4375 | 0.6035 | 2.2188 | -1728.0 | -1536.0 | -1.5234 | -3.4531 |
0.0041 | 2.7225 | 2600 | 1.4846 | -11.8125 | -14.0625 | 0.5938 | 2.2031 | -1696.0 | -1504.0 | -1.8047 | -3.75 |
0.0049 | 2.8272 | 2700 | 1.5020 | -12.0 | -14.25 | 0.5977 | 2.2344 | -1712.0 | -1520.0 | -1.7266 | -3.6719 |
0.0063 | 2.9319 | 2800 | 1.5022 | -12.0 | -14.25 | 0.5996 | 2.2188 | -1712.0 | -1520.0 | -1.7422 | -3.6875 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.3.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 9
Inference API (serverless) does not yet support model repos that contain custom code.