CheeLi03's picture
Upload tokenizer
46ab5ef verified
|
raw
history blame
2.33 kB
metadata
base_model: openai/whisper-tiny
datasets:
  - fleurs
language:
  - th
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Tiny Thai Punctuation 5k - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: th_th
          split: None
          args: 'config: th split: test'
        metrics:
          - type: wer
            value: 113.91593445737354
            name: Wer

Whisper Tiny Thai Punctuation 5k - Chee Li

This model is a fine-tuned version of openai/whisper-tiny on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8643
  • Wer: 113.9159

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 7000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2866 5.2356 1000 0.6085 126.8345
0.0843 10.4712 2000 0.6126 116.8844
0.0169 15.7068 3000 0.6997 126.3833
0.0041 20.9424 4000 0.7786 120.2090
0.0019 26.1780 5000 0.8240 116.0294
0.0012 31.4136 6000 0.8532 118.7129
0.0011 36.6492 7000 0.8643 113.9159

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.3