File size: 2,467 Bytes
09155b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---

library_name: transformers
license: mit
base_model: camembert-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: french-ner-model
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# french-ner-model

This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0154
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Accuracy: 0.9972

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05

- train_batch_size: 16

- eval_batch_size: 16

- seed: 42

- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1  | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| No log        | 1.0   | 160  | 0.1578          | 0.0       | 0.0    | 0.0 | 0.9528   |
| No log        | 2.0   | 320  | 0.0457          | 0.0       | 0.0    | 0.0 | 0.9947   |
| No log        | 3.0   | 480  | 0.0288          | 0.0       | 0.0    | 0.0 | 0.9962   |
| 0.1372        | 4.0   | 640  | 0.0228          | 0.0       | 0.0    | 0.0 | 0.9967   |
| 0.1372        | 5.0   | 800  | 0.0196          | 0.0       | 0.0    | 0.0 | 0.9968   |
| 0.1372        | 6.0   | 960  | 0.0177          | 0.0       | 0.0    | 0.0 | 0.9971   |
| 0.0245        | 7.0   | 1120 | 0.0166          | 0.0       | 0.0    | 0.0 | 0.9972   |
| 0.0245        | 8.0   | 1280 | 0.0159          | 0.0       | 0.0    | 0.0 | 0.9971   |
| 0.0245        | 9.0   | 1440 | 0.0155          | 0.0       | 0.0    | 0.0 | 0.9972   |
| 0.018         | 10.0  | 1600 | 0.0154          | 0.0       | 0.0    | 0.0 | 0.9972   |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cpu
- Datasets 3.1.0
- Tokenizers 0.20.3