Edit model card

llama-160m-qqp

This model is a fine-tuned version of JackFram/llama-160m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5816
  • Accuracy: 0.6842

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6019 1.0 2842 0.5971 0.6734
0.5849 2.0 5685 0.5836 0.6843
0.5819 3.0 8527 0.5815 0.6855
0.5768 4.0 11368 0.5816 0.6842

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.18.0
  • Tokenizers 0.13.3
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Cheng98/llama-160m-qqp

Finetuned
(7)
this model