|
--- |
|
license: apache-2.0 |
|
base_model: openai/whisper-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-small-noisy-hi |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-small-noisy-hi |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5460 |
|
- Wer: 74.5720 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 48 |
|
- eval_batch_size: 24 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 3000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.5752 | 0.46 | 50 | 2.2665 | 120.7418 | |
|
| 1.6855 | 0.92 | 100 | 1.6174 | 92.1494 | |
|
| 1.4464 | 1.38 | 150 | 1.4430 | 92.0543 | |
|
| 1.3211 | 1.83 | 200 | 1.3179 | 88.5094 | |
|
| 1.1732 | 2.29 | 250 | 1.2025 | 86.2182 | |
|
| 1.0507 | 2.75 | 300 | 1.0736 | 83.7628 | |
|
| 0.8575 | 3.21 | 350 | 0.9902 | 80.8404 | |
|
| 0.8096 | 3.67 | 400 | 0.9516 | 80.1833 | |
|
| 0.7257 | 4.13 | 450 | 0.9286 | 78.7740 | |
|
| 0.6689 | 4.59 | 500 | 0.9091 | 77.0621 | |
|
| 0.6331 | 5.05 | 550 | 0.9014 | 76.5087 | |
|
| 0.5123 | 5.5 | 600 | 0.9030 | 74.3213 | |
|
| 0.505 | 5.96 | 650 | 0.8833 | 76.0851 | |
|
| 0.3716 | 6.42 | 700 | 0.9274 | 75.5144 | |
|
| 0.3759 | 6.88 | 750 | 0.9227 | 74.1657 | |
|
| 0.2658 | 7.34 | 800 | 0.9754 | 77.3993 | |
|
| 0.2624 | 7.8 | 850 | 0.9800 | 74.9784 | |
|
| 0.1755 | 8.26 | 900 | 1.0364 | 74.5807 | |
|
| 0.1771 | 8.72 | 950 | 1.0549 | 76.0678 | |
|
| 0.1239 | 9.17 | 1000 | 1.1081 | 74.8314 | |
|
| 0.112 | 9.63 | 1050 | 1.1373 | 74.9524 | |
|
| 0.0942 | 10.09 | 1100 | 1.1697 | 75.2205 | |
|
| 0.0691 | 10.55 | 1150 | 1.2068 | 76.6384 | |
|
| 0.0659 | 11.01 | 1200 | 1.2280 | 75.6095 | |
|
| 0.0417 | 11.47 | 1250 | 1.2840 | 74.9697 | |
|
| 0.0416 | 11.93 | 1300 | 1.3025 | 75.9035 | |
|
| 0.025 | 12.39 | 1350 | 1.3342 | 76.1110 | |
|
| 0.0258 | 12.84 | 1400 | 1.3580 | 74.9438 | |
|
| 0.0182 | 13.3 | 1450 | 1.4077 | 75.9467 | |
|
| 0.0154 | 13.76 | 1500 | 1.4214 | 75.1167 | |
|
| 0.0131 | 14.22 | 1550 | 1.4525 | 74.8660 | |
|
| 0.0119 | 14.68 | 1600 | 1.4903 | 74.7709 | |
|
| 0.011 | 15.14 | 1650 | 1.5147 | 75.0476 | |
|
| 0.0079 | 15.6 | 1700 | 1.5375 | 75.9727 | |
|
| 0.0087 | 16.06 | 1750 | 1.5460 | 74.5720 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.0.dev0 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|