File size: 2,199 Bytes
731a340
 
 
 
 
 
 
 
 
 
 
 
 
30e0be9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daccbec
 
30e0be9
 
 
 
 
 
 
731a340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
license: cc-by-nc-4.0
base_model: KT-AI/midm-bitext-S-7B-inst-v1
tags:
- generated_from_trainer
model-index:
- name: lora-midm-7b-food-order-understanding
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# <Midm ๋ชจ๋ธ์„ nsmc ๋ฐ์ดํ„ฐ์…‹์„ ํ•ด๊ฒฐํ•˜๋Š” ๋ชจ๋ธ์ด ๋˜๋„๋ก ๋ฏธ์„ธํŠœ๋‹ ํ•˜๊ธฐ>

๋ชจ๋ธ: Midm</br>
๋ฐ์ดํ„ฐ์…‹: nsmc</br> 
https://huggingface.co/datasets/nsmc </br> 
Train ๋ฐ์ดํ„ฐ: 3000</br>
Test ๋ฐ์ดํ„ฐ: 1000

## [ํ…Œ์ŠคํŠธ ๊ฒฐ๊ณผ]

**์ •ํ™•๋„: 89.00%**

**ํ˜ผ๋™ํ–‰๋ ฌ(Confusion Matrix)**

||์ •๋‹ต Positive|์ •๋‹ต Negative|
|:------:|:------:|:------:|
|์˜ˆ์ธก Positive|474|76|
|์˜ˆ์ธก Negative|34|416|


**ํ‰๊ฐ€์ง€ํ‘œ**

||||
|:------:|:------:|:------:|
|์ •๋ฐ€๋„(Precision)|0.862|
|์žฌํ˜„์œจ(Recall)|0.933|
|F1 Score|0.927|

## [์„ฑ๋Šฅ ํ–ฅ์ƒ] </br>
train ๋ฐ์ดํ„ฐ ์ˆ˜๋ฅผ 2000์—์„œ 2500, 3000์œผ๋กœ ๋Š˜๋ ค๊ฐ€๋ฉฐ ์„ฑ๋Šฅ์„ ์•ฝ 8% ์ •๋„ ๋†’์˜€์œผ๋ฉฐ,
TrainingArguments์˜ max_steps ๋“ฑ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์กฐ์ ˆํ•ด๊ฐ€๋ฉฐ ์„ฑ๋Šฅ์„ ๋†’์ด๊ณ ์ž ๋…ธ๋ ฅํ•˜์˜€๋‹ค. 


------------------------------------------------------------------------------------------------------------------------




# lora-midm-7b-food-order-understanding

This model is a fine-tuned version of [KT-AI/midm-bitext-S-7B-inst-v1](https://huggingface.co/KT-AI/midm-bitext-S-7B-inst-v1) on an unknown dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 300
- mixed_precision_training: Native AMP

### Training results



### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0