File size: 2,199 Bytes
731a340 30e0be9 daccbec 30e0be9 731a340 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: cc-by-nc-4.0
base_model: KT-AI/midm-bitext-S-7B-inst-v1
tags:
- generated_from_trainer
model-index:
- name: lora-midm-7b-food-order-understanding
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# <Midm ๋ชจ๋ธ์ nsmc ๋ฐ์ดํฐ์
์ ํด๊ฒฐํ๋ ๋ชจ๋ธ์ด ๋๋๋ก ๋ฏธ์ธํ๋ ํ๊ธฐ>
๋ชจ๋ธ: Midm</br>
๋ฐ์ดํฐ์
: nsmc</br>
https://huggingface.co/datasets/nsmc </br>
Train ๋ฐ์ดํฐ: 3000</br>
Test ๋ฐ์ดํฐ: 1000
## [ํ
์คํธ ๊ฒฐ๊ณผ]
**์ ํ๋: 89.00%**
**ํผ๋ํ๋ ฌ(Confusion Matrix)**
||์ ๋ต Positive|์ ๋ต Negative|
|:------:|:------:|:------:|
|์์ธก Positive|474|76|
|์์ธก Negative|34|416|
**ํ๊ฐ์งํ**
||||
|:------:|:------:|:------:|
|์ ๋ฐ๋(Precision)|0.862|
|์ฌํ์จ(Recall)|0.933|
|F1 Score|0.927|
## [์ฑ๋ฅ ํฅ์] </br>
train ๋ฐ์ดํฐ ์๋ฅผ 2000์์ 2500, 3000์ผ๋ก ๋๋ ค๊ฐ๋ฉฐ ์ฑ๋ฅ์ ์ฝ 8% ์ ๋ ๋์์ผ๋ฉฐ,
TrainingArguments์ max_steps ๋ฑ์ ํ๋ผ๋ฏธํฐ๋ฅผ ์กฐ์ ํด๊ฐ๋ฉฐ ์ฑ๋ฅ์ ๋์ด๊ณ ์ ๋
ธ๋ ฅํ์๋ค.
------------------------------------------------------------------------------------------------------------------------
# lora-midm-7b-food-order-understanding
This model is a fine-tuned version of [KT-AI/midm-bitext-S-7B-inst-v1](https://huggingface.co/KT-AI/midm-bitext-S-7B-inst-v1) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 300
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|