Edit model card

twitter-roberta-base-efl-hateval

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2021-124m on the HatEval dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.7913
  • F1: 0.7899
  • Loss: 0.3683

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss
0.5392 1.0 211 0.7 0.6999 0.4048
0.3725 2.0 422 0.759 0.7584 0.3489
0.3158 3.0 633 0.7613 0.7570 0.3287
0.289 4.0 844 0.769 0.7684 0.3307
0.2716 5.0 1055 0.7767 0.7750 0.3241
0.2575 6.0 1266 0.7787 0.7782 0.3272
0.2441 7.0 1477 0.7783 0.7776 0.3258
0.2363 8.0 1688 0.7777 0.7773 0.3316
0.2262 9.0 1899 0.7843 0.7815 0.3150
0.2191 10.0 2110 0.7813 0.7802 0.3241
0.2112 11.0 2321 0.7867 0.7860 0.3276
0.2047 12.0 2532 0.7897 0.7886 0.3266
0.1973 13.0 2743 0.7893 0.7884 0.3299
0.1897 14.0 2954 0.792 0.7907 0.3301
0.1862 15.0 3165 0.794 0.7925 0.3283
0.1802 16.0 3376 0.7907 0.7903 0.3465
0.1764 17.0 3587 0.7937 0.7922 0.3393
0.1693 18.0 3798 0.7903 0.7893 0.3494
0.1666 19.0 4009 0.7943 0.7930 0.3486
0.1631 20.0 4220 0.7927 0.7917 0.3516
0.1609 21.0 4431 0.7907 0.7893 0.3537
0.1581 22.0 4642 0.7913 0.7902 0.3586
0.1548 23.0 4853 0.789 0.7884 0.3698
0.1535 24.0 5064 0.7893 0.7880 0.3622
0.1522 25.0 5275 0.7923 0.7909 0.3625
0.15 26.0 5486 0.7913 0.7899 0.3632
0.1479 27.0 5697 0.792 0.7909 0.3677
0.1441 28.0 5908 0.792 0.7909 0.3715
0.145 29.0 6119 0.792 0.7906 0.3681
0.1432 30.0 6330 0.7913 0.7899 0.3683

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.0.0
  • Tokenizers 0.11.6
Downloads last month
35
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.