CocoRoF commited on
Commit
b5a1524
·
verified ·
1 Parent(s): b35c11a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -10
README.md CHANGED
@@ -8,8 +8,7 @@ tags:
8
  - loss:CosineSimilarityLoss
9
  base_model: answerdotai/ModernBERT-base
10
  widget:
11
- - source_sentence: 우리는 움직이는 동행 우주 정지 좌표계에 비례하여 이동하고 있습니다 ... 약 371km / s에서 별자리 leo
12
- 쪽으로. "
13
  sentences:
14
  - 두 마리의 독수리가 가지에 앉는다.
15
  - 다른 물체와는 관련이 없는 '정지'는 없다.
@@ -34,9 +33,6 @@ widget:
34
  - 우리와 같은 태양계가 은하계 밖에서 존재할 수도 있을 것입니다.
35
  - 그 여자는 데이트하러 가는 중이다.
36
  - 녹색 버스가 도로를 따라 내려간다.
37
- datasets:
38
- - x2bee/Korean_NLI_dataset
39
- - CocoRoF/sts_dev
40
  pipeline_tag: sentence-similarity
41
  library_name: sentence-transformers
42
  metrics:
@@ -51,7 +47,7 @@ metrics:
51
  - pearson_max
52
  - spearman_max
53
  model-index:
54
- - name: SentenceTransformer based on x2bee/KoModernBERT-base-mlm-v03-ckp00
55
  results:
56
  - task:
57
  type: semantic-similarity
@@ -94,18 +90,16 @@ model-index:
94
 
95
  # SentenceTransformer based on x2bee/KoModernBERT-base-mlm-v03-ckp00
96
 
97
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [x2bee/KoModernBERT-base-mlm-v03-ckp00](https://huggingface.co/x2bee/KoModernBERT-base-mlm-v03-ckp00) on the [korean_nli_dataset](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
98
 
99
  ## Model Details
100
 
101
  ### Model Description
102
  - **Model Type:** Sentence Transformer
103
- - **Base model:** [x2bee/KoModernBERT-base-mlm-v03-ckp00](https://huggingface.co/x2bee/KoModernBERT-base-mlm-v03-ckp00) <!-- at revision addb15798678d7f76904915cf8045628d402b3ce -->
104
  - **Maximum Sequence Length:** 512 tokens
105
  - **Output Dimensionality:** 768 dimensions
106
  - **Similarity Function:** Cosine Similarity
107
- - **Training Dataset:**
108
- - [korean_nli_dataset](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset)
109
  <!-- - **Language:** Unknown -->
110
  <!-- - **License:** Unknown -->
111
 
 
8
  - loss:CosineSimilarityLoss
9
  base_model: answerdotai/ModernBERT-base
10
  widget:
11
+ - source_sentence: 우리는 움직이는 동행 우주 정지 좌표계에 비례하여 이동하고 있습니다 ... 약 371km / s에서 별자리 leo 쪽으로. "
 
12
  sentences:
13
  - 두 마리의 독수리가 가지에 앉는다.
14
  - 다른 물체와는 관련이 없는 '정지'는 없다.
 
33
  - 우리와 같은 태양계가 은하계 밖에서 존재할 수도 있을 것입니다.
34
  - 그 여자는 데이트하러 가는 중이다.
35
  - 녹색 버스가 도로를 따라 내려간다.
 
 
 
36
  pipeline_tag: sentence-similarity
37
  library_name: sentence-transformers
38
  metrics:
 
47
  - pearson_max
48
  - spearman_max
49
  model-index:
50
+ - name: SentenceTransformer based on answerdotai/ModernBERT-base
51
  results:
52
  - task:
53
  type: semantic-similarity
 
90
 
91
  # SentenceTransformer based on x2bee/KoModernBERT-base-mlm-v03-ckp00
92
 
93
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [korean_nli_dataset](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
94
 
95
  ## Model Details
96
 
97
  ### Model Description
98
  - **Model Type:** Sentence Transformer
99
+ - **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision addb15798678d7f76904915cf8045628d402b3ce -->
100
  - **Maximum Sequence Length:** 512 tokens
101
  - **Output Dimensionality:** 768 dimensions
102
  - **Similarity Function:** Cosine Similarity
 
 
103
  <!-- - **Language:** Unknown -->
104
  <!-- - **License:** Unknown -->
105