Edit model card

luganda-ner-v1

This model is a fine-tuned version of xlm-roberta-base on the lg-ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3188
  • Precision: 0.7988
  • Recall: 0.8026
  • F1: 0.8007
  • Accuracy: 0.9452

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 261 0.2915 0.7456 0.6891 0.7162 0.9240
0.2284 2.0 522 0.2965 0.7393 0.7314 0.7353 0.9294
0.2284 3.0 783 0.2830 0.7426 0.7576 0.7500 0.9271
0.1426 4.0 1044 0.2710 0.7935 0.7690 0.7810 0.9387
0.1426 5.0 1305 0.2805 0.8087 0.7636 0.7855 0.9389
0.0881 6.0 1566 0.2992 0.7734 0.7884 0.7808 0.9404
0.0881 7.0 1827 0.2746 0.8109 0.7864 0.7985 0.9457
0.0582 8.0 2088 0.3149 0.7753 0.7925 0.7838 0.9400
0.0582 9.0 2349 0.3179 0.7940 0.7945 0.7942 0.9440
0.0403 10.0 2610 0.3188 0.7988 0.8026 0.8007 0.9452

Framework versions

  • Transformers 4.27.4
  • Pytorch 1.13.1+cu116
  • Datasets 2.11.0
  • Tokenizers 0.13.2
Downloads last month
31
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results