setsumbt-dst-sgd / README.md
CarelvNiekerk's picture
Update README.md
eac02c5
metadata
language:
  - en
license: apache-2.0
tags:
  - roberta
  - classification
  - dialog state tracking
  - conversational system
  - task-oriented dialog
datasets:
  - ConvLab/sgd
metrics:
  - Joint Goal Accuracy
  - Slot F1
model-index:
  - name: setsumbt-dst-sgd
    results:
      - task:
          type: classification
          name: dialog state tracking
        dataset:
          type: ConvLab/sgd
          name: SGD
          split: test
        metrics:
          - type: Joint Goal Accuracy
            value: 20
            name: JGA
          - type: Slot F1
            value: 58.8
            name: Slot F1

SetSUMBT-dst-sgd

This model is a fine-tuned version SetSUMBT of roberta-base on Schema-Guided Dialog.

Refer to ConvLab-3 for model description and usage.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00001
  • train_batch_size: 3
  • eval_batch_size: 16
  • seed: 0
  • gradient_accumulation_steps: 1
  • optimizer: AdamW
  • lr_scheduler_type: linear
  • num_epochs: 50.0

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.8.0+cu110
  • Datasets 2.3.2
  • Tokenizers 0.12.1