EEVE-Korean-Instruct-10.8B-v1.0-AWQ
- Model creator: Yanolja
- Original model: yanolja/EEVE-Korean-Instruct-10.8B-v1.0
Description
This repo contains AWQ model files for yanolja/EEVE-Korean-Instruct-10.8B-v1.0.
About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
It is supported by:
- Text Generation Webui - using Loader: AutoAWQ
- vLLM - Llama and Mistral models only
- Hugging Face Text Generation Inference (TGI)
- Transformers version 4.35.0 and later, from any code or client that supports Transformers
- AutoAWQ - for use from Python code
Using OpenAI Chat API with vLLM
Documentation on installing and using vLLM can be found here.
- Please ensure you are using vLLM version 0.2 or later.
- When using vLLM as a server, pass the
--quantization awq
parameter.
Start the OpenAI-Compatible Server:
- vLLM can be deployed as a server that implements the OpenAI API protocol. This allows vLLM to be used as a drop-in replacement for applications using OpenAI API
python3 -m vllm.entrypoints.openai.api_server --model Copycats/EEVE-Korean-Instruct-10.8B-v1.0-AWQ --quantization awq --dtype half
- --model: huggingface model path
- --quantization: βawqβ
- --dtype: βhalfβ for FP16. Recommended for AWQ quantization.
Querying the model using OpenAI Chat API:
- You can use the create chat completion endpoint to communicate with the model in a chat-like interface:
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Copycats/EEVE-Korean-Instruct-10.8B-v1.0-AWQ",
"messages": [
{"role": "system", "content": "λΉμ μ μ¬μ©μμ μ§λ¬Έμ μΉμ νκ² λ΅λ³νλ μ΄μμ€ν΄νΈμ
λλ€."},
{"role": "user", "content": "κ΄μ€λ μ¬νΌμ λλ¬Όμ΄ λλ©΄ μ΄λ»κ² νλμ?"}
]
}'
Python Client Example:
- Using the openai python package, you can also communicate with the model in a chat-like manner:
from openai import OpenAI
# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
chat_response = client.chat.completions.create(
model="Copycats/EEVE-Korean-Instruct-10.8B-v1.0-AWQ",
messages=[
{"role": "system", "content": "λΉμ μ μ¬μ©μμ μ§λ¬Έμ μΉμ νκ² λ΅λ³νλ μ΄μμ€ν΄νΈμ
λλ€."},
{"role": "user", "content": "κ΄μ€λ μ¬νΌμ λλ¬Όμ΄ λλ©΄ μ΄λ»κ² νλμ?"},
]
)
print("Chat response:", chat_response)
- Downloads last month
- 38
Model tree for Copycats/EEVE-Korean-Instruct-10.8B-v1.0-AWQ
Base model
upstage/SOLAR-10.7B-v1.0
Finetuned
yanolja/EEVE-Korean-10.8B-v1.0
Finetuned
yanolja/EEVE-Korean-Instruct-10.8B-v1.0