TQC Agent playing PandaReachDense-v2
This is a trained model of a TQC agent playing PandaReachDense-v2 using the stable-baselines3 library and the RL Zoo.
The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.
Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
pip install rl_zoo3
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo tqc --env PandaReachDense-v2 -orga CoreyMorris -f logs/
python -m rl_zoo3.enjoy --algo tqc --env PandaReachDense-v2 -f logs/
If you installed the RL Zoo3 via pip (pip install rl_zoo3
), from anywhere you can do:
python -m rl_zoo3.load_from_hub --algo tqc --env PandaReachDense-v2 -orga CoreyMorris -f logs/
python -m rl_zoo3.enjoy --algo tqc --env PandaReachDense-v2 -f logs/
Training (with the RL Zoo)
python -m rl_zoo3.train --algo tqc --env PandaReachDense-v2 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo tqc --env PandaReachDense-v2 -f logs/ -orga CoreyMorris
Hyperparameters
OrderedDict([('batch_size', 256),
('buffer_size', 1000000),
('ent_coef', 'auto'),
('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'),
('gamma', 0.95),
('learning_rate', 'lin_0.001'),
('learning_starts', 1000),
('n_timesteps', 100000.0),
('normalize', True),
('policy', 'MultiInputPolicy'),
('policy_kwargs', 'dict(net_arch=[64, 64], n_critics=1)'),
('replay_buffer_class', 'HerReplayBuffer'),
('replay_buffer_kwargs',
"dict( online_sampling=True, goal_selection_strategy='future', "
'n_sampled_goal=4 )'),
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
Environment Arguments
{'render': True}
- Downloads last month
- 15
Evaluation results
- mean_reward on PandaReachDense-v2self-reported-0.27 +/- 0.10