Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.3.0

base_model: microsoft/phi-2
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: tatsu-lab/alpaca
    type: alpaca

dataset_prepared_path:
val_set_size: 0.05
output_dir: ./phi-sft-out

sequence_len: 2048
sample_packing: false  # currently unsupported
pad_to_sequence_len:

adapter:
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.1
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
  - embd
  - lm_head

wandb_project: Deepseek Wa
wandb_entity: lucasatkins81
wandb_watch:
wandb_name: Phi2 a6000 FT
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1.5
optimizer: paged_adamw_8bit
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 1e-5

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true
special_tokens:
  pad_token: "<|endoftext|>"

phi-sft-out

This model is a fine-tuned version of microsoft/phi-2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1.5

Training results

Training Loss Epoch Step Validation Loss
1.4382 0.0 1 nan
0.9139 0.25 12351 nan
0.016 0.5 24702 nan
0.0538 0.75 37053 nan
0.6701 1.0 49404 nan
0.0018 1.25 61755 nan

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.1+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Crystalcareai/PhiAlpaca2

Base model

microsoft/phi-2
Finetuned
(283)
this model