project-ocr

This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9877
  • Precision: 0.7516
  • Recall: 0.8039
  • F1: 0.7769
  • Accuracy: 0.8103

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.83 50 2.6184 0.4355 0.5404 0.4823 0.4338
No log 1.67 100 1.8766 0.5912 0.6018 0.5964 0.5620
No log 2.5 150 1.6165 0.5737 0.6347 0.6027 0.6150
No log 3.33 200 1.4317 0.5732 0.6737 0.6194 0.6944
No log 4.17 250 1.2787 0.6190 0.7126 0.6625 0.7347
No log 5.0 300 1.1632 0.6729 0.7560 0.7120 0.7759
No log 5.83 350 1.0990 0.6980 0.7665 0.7306 0.7857
No log 6.67 400 1.0327 0.7125 0.7792 0.7444 0.7946
No log 7.5 450 0.9994 0.7526 0.8016 0.7764 0.8065
1.6589 8.33 500 0.9877 0.7516 0.8039 0.7769 0.8103

Framework versions

  • Transformers 4.27.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results