metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: aptner_deberta
results: []
aptner_deberta
This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2929
- Precision: 0.5550
- Recall: 0.5835
- F1: 0.5689
- Accuracy: 0.9205
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.6136 | 0.59 | 500 | 0.3298 | 0.5007 | 0.5287 | 0.5143 | 0.9172 |
0.308 | 1.19 | 1000 | 0.2929 | 0.5550 | 0.5835 | 0.5689 | 0.9205 |
0.2428 | 1.78 | 1500 | 0.3124 | 0.5330 | 0.6192 | 0.5729 | 0.9177 |
0.2088 | 2.37 | 2000 | 0.3204 | 0.5356 | 0.6440 | 0.5848 | 0.9147 |
0.1783 | 2.97 | 2500 | 0.3319 | 0.5432 | 0.6760 | 0.6024 | 0.9149 |
0.1434 | 3.56 | 3000 | 0.3371 | 0.5640 | 0.6494 | 0.6037 | 0.9203 |
0.1352 | 4.15 | 3500 | 0.3827 | 0.5425 | 0.6249 | 0.5808 | 0.9135 |
0.1135 | 4.74 | 4000 | 0.3862 | 0.5360 | 0.6760 | 0.5979 | 0.9136 |
0.0987 | 5.34 | 4500 | 0.3978 | 0.5439 | 0.6497 | 0.5921 | 0.9141 |
0.0942 | 5.93 | 5000 | 0.3738 | 0.5791 | 0.6425 | 0.6091 | 0.9225 |
0.0746 | 6.52 | 5500 | 0.4269 | 0.5490 | 0.6479 | 0.5943 | 0.9161 |
0.0727 | 7.12 | 6000 | 0.4236 | 0.5579 | 0.6437 | 0.5977 | 0.9171 |
0.0661 | 7.71 | 6500 | 0.4239 | 0.5650 | 0.6479 | 0.6036 | 0.9200 |
0.0578 | 8.3 | 7000 | 0.4485 | 0.5579 | 0.6332 | 0.5932 | 0.9175 |
0.0505 | 8.9 | 7500 | 0.4553 | 0.5546 | 0.6353 | 0.5922 | 0.9163 |
0.0513 | 9.49 | 8000 | 0.4629 | 0.5587 | 0.6425 | 0.5977 | 0.9171 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1