Cyber-ThreaD/DeBERTa-v3-AttackER
This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.5468
- Precision: 0.4730
- Recall: 0.5569
- F1: 0.5115
- Accuracy: 0.7401
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.7886 | 0.4 | 500 | 1.5075 | 0.1842 | 0.2103 | 0.1964 | 0.6169 |
1.3644 | 0.81 | 1000 | 1.3342 | 0.2364 | 0.3056 | 0.2666 | 0.6492 |
1.1181 | 1.21 | 1500 | 1.2655 | 0.2959 | 0.3585 | 0.3242 | 0.6812 |
0.9833 | 1.61 | 2000 | 1.2368 | 0.2941 | 0.3902 | 0.3354 | 0.6778 |
0.9036 | 2.01 | 2500 | 1.2682 | 0.3551 | 0.4021 | 0.3772 | 0.7023 |
0.7102 | 2.42 | 3000 | 1.2176 | 0.3668 | 0.4590 | 0.4078 | 0.7159 |
0.6868 | 2.82 | 3500 | 1.2170 | 0.3794 | 0.4683 | 0.4192 | 0.7147 |
0.5671 | 3.22 | 4000 | 1.2603 | 0.3951 | 0.4881 | 0.4367 | 0.7259 |
0.4878 | 3.63 | 4500 | 1.2460 | 0.3925 | 0.5093 | 0.4433 | 0.7333 |
0.4942 | 4.03 | 5000 | 1.3147 | 0.4047 | 0.4802 | 0.4392 | 0.7284 |
0.3812 | 4.43 | 5500 | 1.3308 | 0.4205 | 0.5146 | 0.4628 | 0.7351 |
0.421 | 4.83 | 6000 | 1.3031 | 0.4275 | 0.5225 | 0.4702 | 0.7386 |
0.3157 | 5.24 | 6500 | 1.3943 | 0.4132 | 0.5040 | 0.4541 | 0.7293 |
0.3072 | 5.64 | 7000 | 1.4087 | 0.4303 | 0.5185 | 0.4703 | 0.7396 |
0.3436 | 6.04 | 7500 | 1.4197 | 0.4461 | 0.5251 | 0.4824 | 0.7363 |
0.2774 | 6.45 | 8000 | 1.4249 | 0.4275 | 0.5225 | 0.4702 | 0.7377 |
0.2629 | 6.85 | 8500 | 1.4811 | 0.4580 | 0.5344 | 0.4933 | 0.7327 |
0.2271 | 7.25 | 9000 | 1.5576 | 0.4733 | 0.5397 | 0.5043 | 0.7415 |
0.235 | 7.66 | 9500 | 1.5468 | 0.4730 | 0.5569 | 0.5115 | 0.7401 |
0.2415 | 8.06 | 10000 | 1.5956 | 0.4730 | 0.5437 | 0.5058 | 0.7433 |
0.1826 | 8.46 | 10500 | 1.6168 | 0.4455 | 0.5410 | 0.4886 | 0.7413 |
0.2083 | 8.86 | 11000 | 1.5866 | 0.4505 | 0.5423 | 0.4922 | 0.7413 |
0.2169 | 9.27 | 11500 | 1.5974 | 0.4708 | 0.5437 | 0.5046 | 0.7468 |
0.1747 | 9.67 | 12000 | 1.6219 | 0.4567 | 0.5437 | 0.4964 | 0.7405 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
Citing & Authors
If you use the model kindly cite the following work
@inproceedings{deka2024attacker,
title={AttackER: Towards Enhancing Cyber-Attack Attribution with a Named Entity Recognition Dataset},
author={Deka, Pritam and Rajapaksha, Sampath and Rani, Ruby and Almutairi, Amirah and Karafili, Erisa},
booktitle={International Conference on Web Information Systems Engineering},
pages={255--270},
year={2024},
organization={Springer}
}
- Downloads last month
- 37
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Cyber-ThreaD/DeBERTa-v3-AttackER
Base model
microsoft/deberta-v3-base