SecureBERT-our-data / README.md
Anonymous
Upload folder using huggingface_hub
407337e
|
raw
history blame
3.68 kB
metadata
license: bigscience-openrail-m
base_model: ehsanaghaei/SecureBERT
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: our_data
    results: []

our_data

This model is a fine-tuned version of ehsanaghaei/SecureBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4668
  • Precision: 0.4762
  • Recall: 0.5291
  • F1: 0.5013
  • Accuracy: 0.7376

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.9177 0.4 500 1.6839 0.06 0.0278 0.0380 0.6004
1.4976 0.81 1000 1.4936 0.2281 0.2659 0.2456 0.6313
1.2309 1.21 1500 1.2915 0.2650 0.3148 0.2878 0.6657
1.0546 1.61 2000 1.2454 0.2950 0.3796 0.3320 0.6804
0.9405 2.01 2500 1.2377 0.3613 0.3532 0.3572 0.6916
0.7501 2.42 3000 1.1723 0.3607 0.4180 0.3873 0.7171
0.7133 2.82 3500 1.1584 0.3632 0.4444 0.3998 0.7160
0.5896 3.22 4000 1.2288 0.4103 0.4444 0.4267 0.7306
0.5353 3.63 4500 1.2319 0.3978 0.4815 0.4357 0.7254
0.5432 4.03 5000 1.2173 0.4269 0.4868 0.4549 0.7306
0.4062 4.43 5500 1.2832 0.4398 0.5026 0.4691 0.7272
0.4485 4.83 6000 1.2196 0.4212 0.5093 0.4611 0.7412
0.3614 5.24 6500 1.3155 0.4325 0.4960 0.4621 0.7325
0.3308 5.64 7000 1.3501 0.4184 0.5119 0.4604 0.7354
0.3645 6.04 7500 1.3391 0.4359 0.5172 0.4731 0.7366
0.2982 6.45 8000 1.3889 0.4093 0.5225 0.4590 0.7315
0.2845 6.85 8500 1.4109 0.4452 0.5159 0.4779 0.7377
0.2482 7.25 9000 1.4668 0.4762 0.5291 0.5013 0.7376
0.2636 7.66 9500 1.4925 0.4540 0.5357 0.4915 0.7341
0.2605 8.06 10000 1.4916 0.4586 0.5344 0.4936 0.7405
0.1989 8.46 10500 1.5096 0.4661 0.5370 0.4991 0.7387
0.2415 8.86 11000 1.4698 0.4603 0.5450 0.4991 0.7443
0.2488 9.27 11500 1.4736 0.4578 0.5304 0.4914 0.7455
0.2129 9.67 12000 1.5067 0.4640 0.5450 0.5012 0.7439

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0