|
--- |
|
license: mit |
|
language: |
|
- en |
|
metrics: |
|
- perplexity |
|
--- |
|
# CLEX: Continuous Length Extrapolation for Large Language Models |
|
This repo stores the checkpoint of CLEX-7B-Chat-16K |
|
|
|
## Features and Highlights of CLEX |
|
![CLEX_diagram](https://github.com/DAMO-NLP-SG/CLEX/assets/18526640/063ffe34-0116-4759-92bf-e22fc7264cdf) |
|
|
|
- **Simple and Clear**: _MINIMAL_ code and architecture changes. Only one up-and-down projection layer introduced, _NO_ recurrent memory caching or sparse attention required. |
|
- **Train Short, Test Long**: _NO_ performance drop on the sequences _4x~8x longer_ than the training ones (see [here](https://github.com/DAMO-NLP-SG/CLEX#language-modelling)). |
|
- **Continuous Length Extrapolation**: Explicitly modeling the continuous dynamics of context window size during length extrapolation. |
|
|
|
More details about long-text modeling with our CLEX can be found at the git [repo](https://github.com/DAMO-NLP-SG/CLEX). |
|
|
|
## Model Zoo |
|
| Model Name | Model Type | Starting Point | Train Data |Train Length | MAX Test Length | |
|
|:-----|:-----|:-----------|:-----------|:-----------|:-----------| |
|
| CLEX-7B-4K | base | LLaMA-2-7B | [Redpajama-Book](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) | 4K | 16K | |
|
| CLEX-7B-Chat-4K | chat | CLEX-7B-4K | [UltraChat](https://github.com/thunlp/UltraChat) | 4K | 16K | |
|
| CLEX-7B-16K | base | LLaMA-2-7B | [Redpajama-Book](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) | 16K | 64K | |
|
| **CLEX-7B-Chat-16K** (this checkpoint) | chat | CLEX-7B-16K | [UltraChat](https://github.com/thunlp/UltraChat) | 16K | 64K | |
|
|
|
|
|
## How to Use |
|
```bash |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("DAMO-NLP-SG/CLEX-7B-Chat-16K", trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained("DAMO-NLP-SG/CLEX-7B-Chat-16K", torch_dtype=torch.bfloat16) |
|
inputs = tokenizer("What is CLEX?", return_tensors="pt") |
|
sample = model.generate(**inputs, max_length=128) |
|
print(tokenizer.decode(sample[0])) |
|
``` |
|
|
|
## Citation |
|
If you find our project useful, hope you can star our repo and cite our paper as follows: |
|
``` |
|
@article{damonlpsg2023clex, |
|
author = {Chen, Guanzheng and Li, Xin and Meng, Zaiqiao and Liang, Shangsong and Bing, Lidong}, |
|
title = {CLEX: Continuous Length Extrapolation for Large Language Models}, |
|
year = 2023, |
|
journal = {arXiv preprint arXiv:2310.16450}, |
|
url = {https://arxiv.org/abs/2310.16450} |
|
} |
|
|