DD0101's picture
update model card README.md
ea81057
|
raw
history blame
2.77 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: disfluency-large-3
    results: []

disfluency-large-3

This model is a fine-tuned version of vinai/phobert-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0364
  • Precision: 0.9849
  • Recall: 0.9802
  • F1: 0.9825
  • Accuracy: 0.9936

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 140 0.0713 0.8955 0.9165 0.9059 0.9816
No log 2.0 280 0.0334 0.9706 0.9730 0.9718 0.9925
No log 3.0 420 0.0584 0.9656 0.9609 0.9633 0.9880
0.1335 4.0 560 0.0352 0.9742 0.9742 0.9742 0.9922
0.1335 5.0 700 0.0539 0.9651 0.9633 0.9642 0.9894
0.1335 6.0 840 0.0293 0.9730 0.9754 0.9742 0.9924
0.1335 7.0 980 0.0364 0.9849 0.9802 0.9825 0.9936
0.0146 8.0 1120 0.0343 0.9795 0.9778 0.9786 0.9941
0.0146 9.0 1260 0.0268 0.9802 0.9814 0.9808 0.9947
0.0146 10.0 1400 0.0427 0.9682 0.9688 0.9685 0.9918
0.0076 11.0 1540 0.0429 0.9576 0.9633 0.9605 0.9899
0.0076 12.0 1680 0.0343 0.9735 0.9730 0.9732 0.9933
0.0076 13.0 1820 0.0305 0.9801 0.9754 0.9777 0.9939
0.0076 14.0 1960 0.0437 0.9765 0.9742 0.9753 0.9924
0.0047 15.0 2100 0.0363 0.9778 0.9778 0.9778 0.9939

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3