translation_en-zh / README.md
DDDSSS's picture
Update README.md
2da6076
|
raw
history blame
4.03 kB
metadata
language:
  - en
  - zh
tags:
  - translation
license: apache-2.0
datasets:
  - DDDSSS/en-zh-dataset
metrics:
  - bleu
  - sacrebleu

该模型主要的训练数据是opus100和CodeAlpaca_20K中的英文作为翻译内容,采用chatglm作为翻译器翻译成中文,并将脏数据筛选后得到DDDSSS/en-zh-dataset数据集

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
parser.add_argument('--device', default="cpu", type=str, help='"cuda:1"、"cuda:2"……')
mode_name = opt.model
device = opt.device
model = AutoModelForSeq2SeqLM.from_pretrained(mode_name)
tokenizer = AutoTokenizer.from_pretrained(mode_name)
translation = pipeline("translation_en_to_zh", model=model, tokenizer=tokenizer,
                       torch_dtype="float", device_map=True,device=device)
x=["If nothing is detected and there is a config.json file, it’s assumed the library is transformers.","By looking into the presence of files such as *.nemo or *saved_model.pb*, the Hub can determine if a model is from NeMo or Keras."]
re = translation(x, max_length=450)
print('翻译为:' ,re)

微调: import numpy as np from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer import torch # books = load_from_disk("") books = load_dataset("json", data_files=".json") books = books["train"].train_test_split(test_size=0.2) checkpoint = "./opus-mt-en-zh" # checkpoint = "./model/checkpoint-19304" tokenizer = AutoTokenizer.from_pretrained(checkpoint) source_lang = "en" target_lang = "zh" def preprocess_function(examples): inputs = [example[source_lang] for example in examples["translation"]] targets = [example[target_lang] for example in examples["translation"]] model_inputs = tokenizer(inputs, text_target=targets, max_length=512, truncation=True) return model_inputs tokenized_books = books.map(preprocess_function, batched=True) data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint) metric = evaluate.load("sacrebleu")

def postprocess_text(preds, labels):
    preds = [pred.strip() for pred in preds]
    labels = [[label.strip()] for label in labels]
    return preds, labels

def compute_metrics(eval_preds):
    preds, labels = eval_preds
    if isinstance(preds, tuple):
        preds = preds[0]
    decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)

    labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
    decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

    decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)

    result = metric.compute(predictions=decoded_preds, references=decoded_labels)
    result = {"bleu": result["score"]}

    prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
    result["gen_len"] = np.mean(prediction_lens)
    result = {k: round(v, 4) for k, v in result.items()}
    return result
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
batchsize=4
training_args = Seq2SeqTrainingArguments(

    output_dir="./my_awesome_opus_books_model",
    evaluation_strategy="epoch",
    learning_rate=2e-4,
    per_device_train_batch_size=batchsize,
    per_device_eval_batch_size=batchsize,
    weight_decay=0.01,
    # save_total_limit=3,
    num_train_epochs=4,
    predict_with_generate=True,
    fp16=True,
    push_to_hub=False,
    save_strategy="epoch",
    jit_mode_eval=True
)

trainer = Seq2SeqTrainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_books["train"],
    eval_dataset=tokenized_books["test"],
    tokenizer=tokenizer,
    data_collator=data_collator,
    compute_metrics=compute_metrics,
)
trainer.train()