mt
This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0345
- Accuracy: 0.7947
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 50000
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.8769 | 0.39 | 500 | 2.3415 | 0.5941 |
2.3422 | 0.78 | 1000 | 2.0567 | 0.6324 |
2.1192 | 1.17 | 1500 | 1.8960 | 0.6535 |
1.9894 | 1.57 | 2000 | 1.7869 | 0.6695 |
1.8961 | 1.96 | 2500 | 1.7181 | 0.6796 |
1.8258 | 2.35 | 3000 | 1.6541 | 0.6893 |
1.7648 | 2.74 | 3500 | 1.5881 | 0.6996 |
1.7159 | 3.13 | 4000 | 1.5544 | 0.7065 |
1.6763 | 3.52 | 4500 | 1.5229 | 0.7101 |
1.6338 | 3.92 | 5000 | 1.4794 | 0.7166 |
1.6 | 4.31 | 5500 | 1.4452 | 0.7222 |
1.5832 | 4.7 | 6000 | 1.4302 | 0.7250 |
1.5532 | 5.09 | 6500 | 1.4013 | 0.7308 |
1.5247 | 5.48 | 7000 | 1.3956 | 0.7325 |
1.5103 | 5.87 | 7500 | 1.3598 | 0.7367 |
1.4866 | 6.26 | 8000 | 1.3331 | 0.7401 |
1.468 | 6.66 | 8500 | 1.3266 | 0.7428 |
1.4402 | 7.05 | 9000 | 1.3119 | 0.7457 |
1.4255 | 7.44 | 9500 | 1.2967 | 0.7481 |
1.4236 | 7.83 | 10000 | 1.2779 | 0.7516 |
1.41 | 8.22 | 10500 | 1.2598 | 0.7544 |
1.3994 | 8.61 | 11000 | 1.2677 | 0.7539 |
1.3809 | 9.01 | 11500 | 1.2334 | 0.7579 |
1.3689 | 9.4 | 12000 | 1.2468 | 0.7581 |
1.3637 | 9.79 | 12500 | 1.2349 | 0.7588 |
1.3587 | 10.18 | 13000 | 1.2157 | 0.7625 |
1.3397 | 10.57 | 13500 | 1.2055 | 0.7630 |
1.3347 | 10.96 | 14000 | 1.1968 | 0.7654 |
1.315 | 11.35 | 14500 | 1.1955 | 0.7652 |
1.3246 | 11.75 | 15000 | 1.1886 | 0.7674 |
1.3078 | 12.14 | 15500 | 1.1942 | 0.7660 |
1.2925 | 12.53 | 16000 | 1.1850 | 0.7678 |
1.3004 | 12.92 | 16500 | 1.1747 | 0.7692 |
1.2911 | 13.31 | 17000 | 1.1591 | 0.7719 |
1.2786 | 13.7 | 17500 | 1.1602 | 0.7734 |
1.2771 | 14.1 | 18000 | 1.1597 | 0.7717 |
1.2774 | 14.49 | 18500 | 1.1547 | 0.7724 |
1.2652 | 14.88 | 19000 | 1.1403 | 0.7751 |
1.262 | 15.27 | 19500 | 1.1397 | 0.7754 |
1.2595 | 15.66 | 20000 | 1.1325 | 0.7778 |
1.2544 | 16.05 | 20500 | 1.1385 | 0.7759 |
1.2424 | 16.44 | 21000 | 1.1291 | 0.7774 |
1.2361 | 16.84 | 21500 | 1.1338 | 0.7782 |
1.2325 | 17.23 | 22000 | 1.1081 | 0.7818 |
1.236 | 17.62 | 22500 | 1.1161 | 0.7789 |
1.2284 | 18.01 | 23000 | 1.1150 | 0.7809 |
1.2267 | 18.4 | 23500 | 1.1001 | 0.7831 |
1.2151 | 18.79 | 24000 | 1.1054 | 0.7829 |
1.2197 | 19.19 | 24500 | 1.1096 | 0.7814 |
1.2226 | 19.58 | 25000 | 1.1098 | 0.7815 |
1.2101 | 19.97 | 25500 | 1.0962 | 0.7840 |
1.2102 | 20.36 | 26000 | 1.0920 | 0.7847 |
1.2003 | 20.75 | 26500 | 1.0828 | 0.7863 |
1.1912 | 21.14 | 27000 | 1.0886 | 0.7854 |
1.1987 | 21.53 | 27500 | 1.0860 | 0.7860 |
1.2072 | 21.93 | 28000 | 1.0812 | 0.7859 |
1.1894 | 22.32 | 28500 | 1.0816 | 0.7858 |
1.2031 | 22.71 | 29000 | 1.0771 | 0.7874 |
1.1819 | 23.1 | 29500 | 1.0674 | 0.7881 |
1.185 | 23.49 | 30000 | 1.0761 | 0.7879 |
1.1873 | 23.88 | 30500 | 1.0697 | 0.7892 |
1.1793 | 24.28 | 31000 | 1.0706 | 0.7884 |
1.1793 | 24.67 | 31500 | 1.0622 | 0.7899 |
1.1748 | 25.06 | 32000 | 1.0630 | 0.7894 |
1.1701 | 25.45 | 32500 | 1.0643 | 0.7889 |
1.1678 | 25.84 | 33000 | 1.0567 | 0.7906 |
1.177 | 26.23 | 33500 | 1.0660 | 0.7886 |
1.1749 | 26.62 | 34000 | 1.0652 | 0.7911 |
1.1623 | 27.02 | 34500 | 1.0436 | 0.7924 |
1.1647 | 27.41 | 35000 | 1.0769 | 0.7873 |
1.1692 | 27.8 | 35500 | 1.0474 | 0.7918 |
1.1572 | 28.19 | 36000 | 1.0454 | 0.7922 |
1.1612 | 28.58 | 36500 | 1.0554 | 0.7916 |
1.1626 | 28.97 | 37000 | 1.0492 | 0.7918 |
1.1613 | 29.37 | 37500 | 1.0586 | 0.7909 |
1.146 | 29.76 | 38000 | 1.0470 | 0.7918 |
1.1558 | 30.15 | 38500 | 1.0530 | 0.7921 |
1.1553 | 30.54 | 39000 | 1.0474 | 0.7910 |
1.1543 | 30.93 | 39500 | 1.0446 | 0.7920 |
1.1523 | 31.32 | 40000 | 1.0521 | 0.7916 |
1.1529 | 31.71 | 40500 | 1.0489 | 0.7923 |
1.1528 | 32.11 | 41000 | 1.0407 | 0.7930 |
1.1532 | 32.5 | 41500 | 1.0386 | 0.7943 |
1.1415 | 32.89 | 42000 | 1.0489 | 0.7913 |
1.1509 | 33.28 | 42500 | 1.0355 | 0.7940 |
1.1484 | 33.67 | 43000 | 1.0375 | 0.7931 |
1.1434 | 34.06 | 43500 | 1.0431 | 0.7928 |
1.1464 | 34.46 | 44000 | 1.0348 | 0.7949 |
1.1394 | 34.85 | 44500 | 1.0514 | 0.7927 |
1.1418 | 35.24 | 45000 | 1.0429 | 0.7933 |
1.1453 | 35.63 | 45500 | 1.0423 | 0.7942 |
1.1411 | 36.02 | 46000 | 1.0358 | 0.7949 |
1.1434 | 36.41 | 46500 | 1.0308 | 0.7954 |
1.1392 | 36.81 | 47000 | 1.0326 | 0.7950 |
1.137 | 37.2 | 47500 | 1.0315 | 0.7948 |
1.14 | 37.59 | 48000 | 1.0406 | 0.7937 |
1.142 | 37.98 | 48500 | 1.0464 | 0.7933 |
1.1404 | 38.37 | 49000 | 1.0423 | 0.7933 |
1.1412 | 38.76 | 49500 | 1.0363 | 0.7950 |
1.143 | 39.15 | 50000 | 1.0355 | 0.7950 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.0.0
- Datasets 2.15.0
- Tokenizers 0.15.0
Model tree for DGurgurov/maltese-wiki-lang-adapter
Base model
google-bert/bert-base-multilingual-cased