ICSR_classification_finetuned_llama_adapters_V100_test
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 1.2486
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3176 | 0.2915 | 500 | 1.2861 |
1.2716 | 0.5829 | 1000 | 1.2627 |
1.248 | 0.8744 | 1500 | 1.2486 |
Framework versions
- PEFT 0.11.1
- Transformers 4.44.0
- Pytorch 2.2.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for DKTech/ICSR_classification_finetuned_llama_adapters_V100
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct