Edit model card

Dagobert42/distilbert-base-uncased-biored-augmented

This model is a fine-tuned version of distilbert-base-uncased on the bigbio/biored dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5692
  • Accuracy: 0.7978
  • Precision: 0.5993
  • Recall: 0.5337
  • F1: 0.5536
  • Weighted F1: 0.7929

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Weighted F1
No log 1.0 25 0.6037 0.7824 0.5931 0.4937 0.5272 0.7719
No log 2.0 50 0.5858 0.7932 0.6023 0.5298 0.5511 0.7849
No log 3.0 75 0.5887 0.795 0.5757 0.5283 0.544 0.7842
No log 4.0 100 0.5890 0.7937 0.5911 0.5331 0.5466 0.7864

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.15.0
Downloads last month
5
Safetensors
Model size
66.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Dagobert42/distilbert-base-uncased-biored-augmented

Finetuned
(6515)
this model