Dagobert42's picture
Push google/mobilebert-uncased trained on biored-original_splits.pt
6d4e0a4 verified
|
raw
history blame
3.56 kB
metadata
language:
  - en
license: mit
base_model: mobilebert-uncased
tags:
  - low-resource NER
  - token_classification
  - biomedicine
  - medical NER
  - generated_from_trainer
datasets:
  - medicine
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: Dagobert42/mobilebert-uncased-biored-finetuned
    results: []

Dagobert42/mobilebert-uncased-biored-finetuned

This model is a fine-tuned version of mobilebert-uncased on the bigbio/biored dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7632
  • Accuracy: 0.7385
  • Precision: 0.2012
  • Recall: 0.2384
  • F1: 0.215
  • Weighted F1: 0.7009

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Weighted F1
No log 1.0 25 1.2345 0.7114 0.1016 0.1429 0.1188 0.5914
No log 2.0 50 1.0379 0.7114 0.1016 0.1429 0.1188 0.5914
No log 3.0 75 1.0300 0.7114 0.1016 0.1429 0.1188 0.5914
No log 4.0 100 1.0228 0.7114 0.1016 0.1429 0.1188 0.5914
No log 5.0 125 1.0144 0.7114 0.1016 0.1429 0.1188 0.5914
No log 6.0 150 0.9994 0.7114 0.1016 0.1429 0.1188 0.5914
No log 7.0 175 0.9681 0.7114 0.1016 0.1429 0.1188 0.5914
No log 8.0 200 0.8869 0.7147 0.2167 0.1487 0.1303 0.6007
No log 9.0 225 0.8511 0.7242 0.2064 0.1716 0.1598 0.6298
No log 10.0 250 0.8187 0.7287 0.157 0.1991 0.1754 0.653
No log 11.0 275 0.8046 0.7317 0.1581 0.2035 0.1775 0.6581
No log 12.0 300 0.7900 0.732 0.1935 0.2126 0.1887 0.6688
No log 13.0 325 0.7865 0.734 0.2312 0.2129 0.1828 0.6664
No log 14.0 350 0.7758 0.7346 0.1604 0.2148 0.1819 0.6672
No log 15.0 375 0.7958 0.7376 0.2086 0.2141 0.1884 0.6697
No log 16.0 400 0.7757 0.733 0.2002 0.2347 0.2122 0.6904
No log 17.0 425 0.7874 0.7393 0.2067 0.2196 0.2119 0.6828
No log 18.0 450 0.7915 0.735 0.2043 0.2391 0.2197 0.6959

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.15.0