|
--- |
|
language: |
|
- en |
|
license: mit |
|
base_model: mobilebert-uncased |
|
tags: |
|
- low-resource NER |
|
- token_classification |
|
- biomedicine |
|
- medical NER |
|
- generated_from_trainer |
|
datasets: |
|
- medicine |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: Dagobert42/mobilebert-uncased-biored-finetuned |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Dagobert42/mobilebert-uncased-biored-finetuned |
|
|
|
This model is a fine-tuned version of [mobilebert-uncased](https://huggingface.co/mobilebert-uncased) on the bigbio/biored dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0264 |
|
- Accuracy: 0.7163 |
|
- Precision: 0.1023 |
|
- Recall: 0.1429 |
|
- F1: 0.1192 |
|
- Weighted F1: 0.5979 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Weighted F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:| |
|
| No log | 1.0 | 13 | 1.6911 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | |
|
| No log | 2.0 | 26 | 1.2080 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | |
|
| No log | 3.0 | 39 | 1.0905 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | |
|
| No log | 4.0 | 52 | 1.0400 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | |
|
| No log | 5.0 | 65 | 1.0439 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | |
|
| No log | 6.0 | 78 | 1.0288 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | |
|
| No log | 7.0 | 91 | 1.0259 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | |
|
| No log | 8.0 | 104 | 1.0180 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | |
|
| No log | 9.0 | 117 | 1.0229 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | |
|
| No log | 10.0 | 130 | 1.0186 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.15.0 |
|
|