Push ../models/xlnet/xlnet-base-cased/biored-augmentations-only/ trained on biored-train_160_splits.pt (160 samples)
8a7fc69
verified
language: | |
- en | |
license: mit | |
base_model: xlnet-base-cased | |
tags: | |
- low-resource NER | |
- token_classification | |
- biomedicine | |
- medical NER | |
- generated_from_trainer | |
datasets: | |
- medicine | |
metrics: | |
- accuracy | |
- precision | |
- recall | |
- f1 | |
model-index: | |
- name: Dagobert42/xlnet-base-cased-biored-augmented | |
results: [] | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# Dagobert42/xlnet-base-cased-biored-augmented | |
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the bigbio/biored dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.1510 | |
- Accuracy: 0.9508 | |
- Precision: 0.8521 | |
- Recall: 0.8278 | |
- F1: 0.8391 | |
- Weighted F1: 0.9506 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2e-05 | |
- train_batch_size: 8 | |
- eval_batch_size: 8 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 50 | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Weighted F1 | | |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:| | |
| No log | 1.0 | 20 | 0.2068 | 0.9335 | 0.8641 | 0.7475 | 0.7976 | 0.9312 | | |
| No log | 2.0 | 40 | 0.1962 | 0.939 | 0.8035 | 0.8046 | 0.8013 | 0.9382 | | |
| No log | 3.0 | 60 | 0.1965 | 0.9429 | 0.8654 | 0.7947 | 0.826 | 0.9415 | | |
| No log | 4.0 | 80 | 0.1964 | 0.9443 | 0.8279 | 0.8174 | 0.8218 | 0.9436 | | |
### Framework versions | |
- Transformers 4.35.2 | |
- Pytorch 2.0.1+cu117 | |
- Datasets 2.18.0 | |
- Tokenizers 0.15.0 | |