Dagobert42's picture
Push ../models/xlnet/xlnet-base-cased/biored-augmentations-only/ trained on biored-train_160_splits.pt (160 samples)
8a7fc69 verified
|
raw
history blame
2.06 kB
---
language:
- en
license: mit
base_model: xlnet-base-cased
tags:
- low-resource NER
- token_classification
- biomedicine
- medical NER
- generated_from_trainer
datasets:
- medicine
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: Dagobert42/xlnet-base-cased-biored-augmented
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Dagobert42/xlnet-base-cased-biored-augmented
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the bigbio/biored dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1510
- Accuracy: 0.9508
- Precision: 0.8521
- Recall: 0.8278
- F1: 0.8391
- Weighted F1: 0.9506
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Weighted F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:|
| No log | 1.0 | 20 | 0.2068 | 0.9335 | 0.8641 | 0.7475 | 0.7976 | 0.9312 |
| No log | 2.0 | 40 | 0.1962 | 0.939 | 0.8035 | 0.8046 | 0.8013 | 0.9382 |
| No log | 3.0 | 60 | 0.1965 | 0.9429 | 0.8654 | 0.7947 | 0.826 | 0.9415 |
| No log | 4.0 | 80 | 0.1964 | 0.9443 | 0.8279 | 0.8174 | 0.8218 | 0.9436 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.15.0