Dagobert42's picture
Push xlnet/xlnet-base-cased trained on biored-original_splits.pt (100 samples)
6bdef10 verified
metadata
language:
  - en
license: mit
base_model: xlnet-base-cased
tags:
  - low-resource NER
  - token_classification
  - biomedicine
  - medical NER
  - generated_from_trainer
datasets:
  - medicine
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: Dagobert42/xlnet-base-cased-biored-finetuned
    results: []

Dagobert42/xlnet-base-cased-biored-finetuned

This model is a fine-tuned version of xlnet-base-cased on the bigbio/biored dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7909
  • Accuracy: 0.756
  • Precision: 0.5226
  • Recall: 0.3518
  • F1: 0.4027
  • Weighted F1: 0.7173

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Weighted F1
No log 1.0 13 0.9045 0.7251 0.3378 0.1564 0.1457 0.6233
No log 2.0 26 0.8688 0.7336 0.5559 0.2281 0.2504 0.6453
No log 3.0 39 0.8579 0.7409 0.5851 0.2931 0.3179 0.6795
No log 4.0 52 0.7956 0.7507 0.5225 0.3443 0.3919 0.7017
No log 5.0 65 0.7947 0.7529 0.532 0.3535 0.4026 0.7093
No log 6.0 78 0.8063 0.7549 0.5502 0.3752 0.4191 0.7168
No log 7.0 91 0.8059 0.7599 0.5496 0.3764 0.4269 0.7227

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.15.0