estudiante_Swin3D_profesor_MViT_akl_RWF2000
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2862
- Accuracy: 0.9113
- F1: 0.9112
- Precision: 0.9113
- Recall: 0.9113
- Roc Auc: 0.9627
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 560
- training_steps: 5600
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc |
---|---|---|---|---|---|---|---|---|
4.1936 | 1.0214 | 280 | 0.3434 | 0.8575 | 0.8563 | 0.8702 | 0.8575 | 0.9537 |
3.4616 | 3.0143 | 560 | 0.2829 | 0.8775 | 0.8774 | 0.8791 | 0.8775 | 0.9587 |
2.8886 | 5.0071 | 840 | 0.3145 | 0.8775 | 0.8770 | 0.8835 | 0.8775 | 0.9586 |
2.4481 | 6.0286 | 1120 | 0.3595 | 0.8675 | 0.8666 | 0.8778 | 0.8675 | 0.9492 |
2.0603 | 8.0214 | 1400 | 0.3079 | 0.8875 | 0.8873 | 0.8903 | 0.8875 | 0.9513 |
1.7483 | 10.0143 | 1680 | 0.2810 | 0.8975 | 0.8974 | 0.8987 | 0.8975 | 0.9631 |
1.808 | 12.0071 | 1960 | 0.2715 | 0.9 | 0.9000 | 0.9000 | 0.9 | 0.9630 |
1.7373 | 13.0286 | 2240 | 0.3319 | 0.875 | 0.8744 | 0.8825 | 0.875 | 0.9652 |
1.621 | 15.0214 | 2520 | 0.2721 | 0.91 | 0.9100 | 0.9102 | 0.91 | 0.9680 |
1.5803 | 17.0143 | 2800 | 0.2640 | 0.9175 | 0.9174 | 0.9193 | 0.9175 | 0.9733 |
1.6703 | 19.0071 | 3080 | 0.2754 | 0.9075 | 0.9074 | 0.9087 | 0.9075 | 0.9675 |
1.3204 | 20.0286 | 3360 | 0.2532 | 0.9175 | 0.9175 | 0.9175 | 0.9175 | 0.9691 |
1.2447 | 22.0214 | 3640 | 0.3191 | 0.89 | 0.8896 | 0.8957 | 0.89 | 0.9721 |
1.4993 | 24.0143 | 3920 | 0.3287 | 0.8875 | 0.8871 | 0.8937 | 0.8875 | 0.9680 |
1.1415 | 26.0071 | 4200 | 0.2641 | 0.9225 | 0.9225 | 0.9225 | 0.9225 | 0.9663 |
1.6365 | 27.0286 | 4480 | 0.2984 | 0.9025 | 0.9025 | 0.9025 | 0.9025 | 0.9573 |
0.9572 | 29.0214 | 4760 | 0.3362 | 0.89 | 0.8898 | 0.8932 | 0.89 | 0.9610 |
1.093 | 31.0143 | 5040 | 0.2720 | 0.91 | 0.9100 | 0.9100 | 0.91 | 0.9654 |
1.2306 | 33.0071 | 5320 | 0.2865 | 0.9125 | 0.9125 | 0.9126 | 0.9125 | 0.9655 |
1.0559 | 34.0286 | 5600 | 0.2807 | 0.905 | 0.905 | 0.905 | 0.905 | 0.9632 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.0.1+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 2