|
--- |
|
language: |
|
- en |
|
license: mit |
|
tags: |
|
- nycu-112-2-datamining-hw2 |
|
- generated_from_trainer |
|
base_model: microsoft/deberta-v2-xlarge |
|
datasets: |
|
- DandinPower/review_onlytitleandtext |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: deberta-v2-xlarge-otat-recommened-hp |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: DandinPower/review_onlytitleandtext |
|
type: DandinPower/review_onlytitleandtext |
|
metrics: |
|
- type: accuracy |
|
value: 0.6777142857142857 |
|
name: Accuracy |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deberta-v2-xlarge-otat-recommened-hp |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v2-xlarge](https://huggingface.co/microsoft/deberta-v2-xlarge) on the DandinPower/review_onlytitleandtext dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7741 |
|
- Accuracy: 0.6777 |
|
- Macro F1: 0.6756 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| |
|
| 0.7904 | 1.14 | 500 | 0.8056 | 0.6661 | 0.6641 | |
|
| 0.7232 | 2.29 | 1000 | 0.7701 | 0.6783 | 0.6757 | |
|
| 0.6944 | 3.43 | 1500 | 0.7669 | 0.681 | 0.6802 | |
|
| 0.6795 | 4.57 | 2000 | 0.7741 | 0.6777 | 0.6756 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.2.2+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|