DandinPower's picture
Upload DebertaV2ForSequenceClassification
d2a0319 verified
metadata
language:
  - en
license: mit
tags:
  - nycu-112-2-datamining-hw2
  - generated_from_trainer
base_model: microsoft/deberta-v2-xxlarge
datasets:
  - DandinPower/review_onlytitleandtext
metrics:
  - accuracy
model-index:
  - name: deberta-v2-xxlarge-otat-small-lr
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: DandinPower/review_onlytitleandtext
          type: DandinPower/review_onlytitleandtext
        metrics:
          - type: accuracy
            value: 0.668
            name: Accuracy

deberta-v2-xxlarge-otat-small-lr

This model is a fine-tuned version of microsoft/deberta-v2-xxlarge on the DandinPower/review_onlytitleandtext dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7982
  • Accuracy: 0.668
  • Macro F1: 0.6665

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.8e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1
1.6073 0.23 100 1.5910 0.2409 0.1625
1.5142 0.46 200 1.2862 0.439 0.3770
1.0421 0.69 300 0.8956 0.617 0.6084
0.8818 0.91 400 0.8344 0.6487 0.6462
0.8309 1.14 500 0.8180 0.6586 0.6575
0.8029 1.37 600 0.8090 0.6603 0.6589
0.7949 1.6 700 0.8124 0.6613 0.6538
0.7847 1.83 800 0.7775 0.6696 0.6698
0.7717 2.06 900 0.7727 0.6703 0.6699
0.7445 2.29 1000 0.7767 0.669 0.6646
0.7367 2.51 1100 0.7774 0.6693 0.6676
0.7419 2.74 1200 0.7580 0.674 0.6743
0.7394 2.97 1300 0.7660 0.6714 0.6722
0.7253 3.2 1400 0.7695 0.6717 0.6740
0.7155 3.43 1500 0.7623 0.6676 0.6699
0.7089 3.66 1600 0.7762 0.6687 0.6630
0.7041 3.89 1700 0.7670 0.6716 0.6719
0.6982 4.11 1800 0.7735 0.6699 0.6659
0.6778 4.34 1900 0.7676 0.6701 0.6676
0.6919 4.57 2000 0.7772 0.6717 0.6692
0.6919 4.8 2100 0.7751 0.6687 0.6662
0.6721 5.03 2200 0.7955 0.6666 0.6613
0.6576 5.26 2300 0.7765 0.6714 0.6720
0.6675 5.49 2400 0.7900 0.6703 0.6711
0.6641 5.71 2500 0.7780 0.6689 0.6676
0.6669 5.94 2600 0.7751 0.6687 0.6675
0.6368 6.17 2700 0.7995 0.6691 0.6690
0.647 6.4 2800 0.7962 0.668 0.6635
0.6285 6.63 2900 0.7861 0.6699 0.6702
0.6656 6.86 3000 0.7939 0.6706 0.6695
0.6397 7.09 3100 0.7876 0.668 0.6672
0.6252 7.31 3200 0.8001 0.669 0.6671
0.6378 7.54 3300 0.8006 0.6687 0.6675
0.6243 7.77 3400 0.7982 0.668 0.6665

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2