|
--- |
|
tags: autotrain |
|
language: en |
|
widget: |
|
- text: "I love AutoTrain 🤗" |
|
datasets: |
|
- Danitg95/autotrain-data-kaggle-effective-arguments |
|
co2_eq_emissions: 5.2497206864306065 |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Multi-class Classification |
|
- Model ID: 1086739296 |
|
- CO2 Emissions (in grams): 5.2497206864306065 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.744236171245575 |
|
- Accuracy: 0.6719238613188308 |
|
- Macro F1: 0.5450301061253738 |
|
- Micro F1: 0.6719238613188308 |
|
- Weighted F1: 0.6349879540623229 |
|
- Macro Precision: 0.6691326843926052 |
|
- Micro Precision: 0.6719238613188308 |
|
- Weighted Precision: 0.6706209016443158 |
|
- Macro Recall: 0.5426627824078865 |
|
- Micro Recall: 0.6719238613188308 |
|
- Weighted Recall: 0.6719238613188308 |
|
|
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Danitg95/autotrain-kaggle-effective-arguments-1086739296 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("Danitg95/autotrain-kaggle-effective-arguments-1086739296", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Danitg95/autotrain-kaggle-effective-arguments-1086739296", use_auth_token=True) |
|
|
|
inputs = tokenizer("I love AutoTrain", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |